Mon, 24 Jan 2022
14:15
Virtual

Cayley fibrations in the Bryant-Salamon manifolds

Federico Trinca
(University of Oxford)
Abstract

In 1989, Bryant and Salamon constructed the first Riemannian manifolds with holonomy group $\Spin(7)$. Since a crucial aspect in the study of manifolds with exceptional holonomy regards fibrations through calibrated submanifolds, it is natural to consider such objects on the Bryant-Salamon manifolds.

In this talk, I will describe the construction and the geometry of (possibly singular) Cayley fibrations on each Bryant-Salamon manifold. These will arise from a natural family of structure-preserving $\SU(2)$ actions. The fibres will provide new examples of Cayley submanifolds.

Mon, 07 Feb 2022
14:15
L5

Nonabelian Hodge theory and the decomposition theorem for 2-CY categories

Ben Davison
(Edinburgh)
Further Information

The talk will be both online (Teams) and in person (L5)

Abstract

Examples of 2CY categories include the category of coherent sheaves on a K3 surface, the category of Higgs bundles, and the category of modules over preprojective algebras or fundamental group algebras of compact Riemann surfaces.  Let p:M->N be the morphism from the stack of semistable objects in a 2CY category to the coarse moduli space.  I'll explain, using cohomological DT theory, formality in 2CY categories, and structure theorems for good moduli stacks, how to prove a version of the BBDG decomposition theorem for the exceptional direct image of the constant sheaf along p, even though none of the usual conditions for the decomposition theorem apply: p isn't projective or representable, M isn't smooth, the constant mixed Hodge module complex Q_M isn't pure...  As an application, I'll explain how this allows us to extend nonabelian Hodge theory to Betti/Dolbeault stacks.

Tue, 30 Nov 2021
12:30
C5

Modelling high-speed droplet impact onto an elastic membrane (Negus). Lubrication model of a valve-controlled, gravity-driven bioreactor (Saville)

Michael Negus & Helen Saville
(Mathematical Institute (University of Oxford))
Abstract

Michael Negus

Modelling high-speed droplet impact onto an elastic membrane

The impact of a high-speed droplet onto an elastic membrane is a highly nonlinear process and poses a formidable modelling challenge due to both the multi-scale nature of the flow and the fluid-structure interaction between the droplet and the membrane. We present two modelling approaches for droplet impact onto elastic membranes: matched asymptotics and direct numerical simulations (DNS). Inviscid Wagner theory is used in the former to derive analytical expressions which approximate the behaviour of the droplet during the early stages of impact, while the DNS builds on the open-source volume-of-fluid code Basilisk. We demonstrate the strong influence that the thickness, tension and stiffness of the membrane have on the dynamics of the droplet and the membrane. We also quantitatively show that the speed the droplet spreads across the substrate is notably decreased when the membrane is more compliant, which is consistent with experimental findings that splashing can be inhibited by impacting onto a soft substrate. We conclude by showing how these methods are complementary, as a combination of both can lead to a thorough understanding of the droplet impact across timescales.

Helen Saville

Lubrication model of a valve-controlled, gravity-driven bioreactor

Hospitals sometimes experience shortages of donor blood platelet supplies, motivating research into in vitro production of platelets. We model a novel platelet bioreactor described in Shepherd et al. [1]. The bioreactor consists of an upper channel, a lower channel, and a cell-seeded porous collagen scaffold situated between the two. Flow is driven by gravity, and controlled by valves on the four inlets and outlets. The bioreactor is long relative to its width, a feature which we exploit to derive a lubrication reduction of Navier-Stokes flow coupled to Darcy. Models for two cases are considered: small amplitude valve oscillations, and order one amplitude valve oscillations. The former model is a systematic reduction; the latter incorporates a phenomenological approximation for the cross-sectional flow profile. As the shear stress experienced by cells influences platelet production, we use our model to quantify the effect of valve dynamics on shear stress.

1: Shepherd, J.H., Howard, D., Waller, A.K., Foster, H.R., Mueller, A., Moreau, T., Evans, A.L., Arumugam, M., Chalon, G.B., Vriend, E. and Davidenko, N., Biomaterials, 182, pp.135-144. (2018)

Mon, 06 Jun 2022
14:15
L5

Symplectic cohomology of compound Du Val singularities

Jonny Evans
(University of Lancaster)
Abstract

(Joint with Y. Lekili) If someone gives you a variety with a singular point, you can try and get some understanding of what the singularity looks like by taking its “link”, that is you take the boundary of a neighbourhood of the singular point. For example, the link of the complex plane curve with a cusp $y^2 = x^3$ is a trefoil knot in the 3-sphere. I want to talk about the links of a class of 3-fold singularities which come up in Mori theory: the compound Du Val (cDV) singularities. These links are 5-dimensional manifolds. It turns out that many cDV singularities have the same 5-manifold as their link, and to tell them apart you need to keep track of some extra structure (a contact structure). We use symplectic cohomology to distinguish the contact structures on many of these links.

Mon, 29 Nov 2021

16:00 - 17:00
C1

Convex Functions and Additive Structure

Peter Bradshaw
Abstract

It is a widely accepted philosophy in additive number theory that convex sets ought not to exhibit much additive structure. We could measure this by estimating the sizes of their sumsets. In this talk, we will hopefully move from the philosophical to the concrete, by giving ways to see that convex sets and functions have poor additive structure. We will also discuss some recent developments in the area.

Explaining cosmic ray antimatter with secondaries from old supernova remnants
Mertsch, P Vittino, A Sarkar, S Physical Review D volume 104 issue 10 (22 Nov 2021)
Tue, 30 Nov 2021
15:30
L4

Thermodynamics of AdS5/CFT4: From Hagedorn to Lee-Yang

Mattias Wilhelm
(Niels Bohr Institute)
Abstract

The AdS/CFT correspondence provides a rich setup to study the properties of gauge theories and the dual theories of gravity, in particular their thermodynamic properties. On RxS3, the maximally supersymmetric Yang-Mills theory with gauge group U(N) exhibits a phase transition that resembles the confinement-deconfinement transition of QCD. For infinite N, this transition is characterized by Hagedorn behavior. We show how the corresponding Hagedorn temperature can be calculated at any value of the ’t Hooft coupling via integrability. For large but finite N, we show how the Hagedorn behavior is replaced by Lee-Yang behavior.

This will be a zoom seminar with communal viewing in L4

Functional calculi for sectorial operators and related function theory
Batty, C Gomilko, A Tomilov, Y Journal of the Institute of Mathematics of Jussieu volume 22 issue 3 1383-1463 (04 Oct 2021)
Subscribe to