Mon, 17 Feb 2020

14:15 - 15:15
L3

New Results on Continuously Expanding a Filtration

PHILIP PROTTER
(Columbia University)
Abstract

We "review" how one can expand a filtration by continuously adding a stochastic process. The new results (obtained with Léo Neufcourt) relate to the seimartingale decompositions after the expansion. We give some possible applications. 

Fri, 31 Jan 2020

12:00 - 13:00
L4

Geometric methods on low-rank matrix and tensor manifolds

Bart Vandereycken
(Université de Genève)
Abstract

I will present numerical methods for low-rank matrix and tensor problems that explicitly make use of the geometry of rank constrained matrix and tensor spaces. We focus on two types of problems: The first are optimization problems, like matrix and tensor completion, solving linear systems and eigenvalue problems. Such problems can be solved by numerical optimization for manifolds, called Riemannian optimization methods. We will explain the basic elements of differential geometry in order to apply such methods efficiently to rank constrained matrix and tensor spaces. The second type of problem is ordinary differential equations, defined on matrix and tensor spaces. We show how their solution can be approximated by the dynamical low-rank principle, and discuss several numerical integrators that rely in an essential way on geometric properties that are characteristic to sets of low rank matrices and tensors. Based on joint work with André Uschmajew (MPI MiS Leipzig).

Wed, 12 Feb 2020
16:00
C1

Generalising Mirzakhani’s curve counting result

Nick Bell
(University of Bristol)
Abstract

On any hyperbolic surface, the number of curves of length at most L is finite. However, it is not immediately clear how quickly this number grows with L. We will discuss Mirzakhani’s breakthrough result regarding the asymptotic behaviour of this number, along with recent efforts to generalise her result using currents.

Mon, 03 Feb 2020
15:45
L6

The complexity of knot genus problem in 3-manifolds

Mehdi Yazdi
(Oxford University)
Abstract

The genus of a knot in a 3-manifold is defined to be the minimum genus of a compact, orientable surface bounding that knot, if such a surface exists. We consider the computational complexity of determining knot genus. Such problems have been studied by several mathematicians; among them are the works of Hass--Lagarias--Pippenger, Agol--Hass--Thurston, Agol and Lackenby. For a fixed 3-manifold the knot genus problem asks, given a knot K and an integer g, whether the genus of K is equal to g. In joint work with Lackenby, we prove that for any fixed, compact, orientable 3-manifold, the knot genus problem lies inNP, answering a question of Agol--Hass--Thurston from 2002. Previously this was known for rational homology 3-spheres by the work of Lackenby.

 

Tue, 28 Jan 2020

12:45 - 14:00
C3

The combined modelling of tumour growth and its environment

Yusuf Al-Husaini
(Brookes University (Oxford))
Abstract

Numerous mathematical models have been proposed for modelling cancerous tumour invasion (Gatenby and Gawlinski 1996), angiogenesis (Owen et al 2008), growth kinetics (Wang et al 2009), response to irradiation (Gao et al 2013) and metastasis (Qiam and Akcay 2018). In this study, we attempt to model the qualitative behavior of growth, invasion, angiogenesis and fragmentation of tumours at the tissue level in an explicitly spatial and continuous manner in two dimensions. We simulate the effectiveness of radiation therapy on a growing tumour in comparison with immunotherapy and propose a novel framework based on vector fields for modelling the impact of interstitial flow on tumour morphology. The results of this model demonstrate the effectiveness of employing a system of partial differential equations along with vector fields for simulating tumour fragmentation and that immunotherapy, when applicable, is substantially more effective than radiation therapy.

Wed, 19 Feb 2020
16:00
C1

Limit Groups and Real Trees

Jonathan Fruchter
(University of Oxford)
Abstract

Limit groups are a powerful tool in the study of free and hyperbolic groups (and even broader classes of groups). I will define limit groups in various ways: algebraic, logical and topological, and draw connections between the different definitions. We will also see how one can equip a limit group with an action on a real tree, and analyze this action using the Rips machine, a generalization of Bass-Serre theory to real trees. As a conclusion, we will obtain that hyperbolic groups whose outer automorphism group is infinite, split non-trivially as graphs of groups.

Tue, 11 Feb 2020

15:30 - 16:30
L3

The Power of Analogy in Physics: From Faraday Waves to Quasicrystals

Ron Lifshitz
(Tel Aviv University)
Abstract

Abstract:

Quasicrystals have been observed recently in soft condensed mater, providing new insight into the ongoing quest to understand their formation and thermodynamic stability. I shall explain the stability of certain soft-matter quasicrystals, using surprisingly simple classical field theories, by making an analogy to Faraday waves. This will provide a recipe for designing pair potentials that yield crystals with (almost) any given symmetry.

Wed, 29 Jan 2020
02:00
N3.12

Introduction to scrolls

Geoffrey Otieno Mboya
((Oxford University))
Abstract

Scrolls play a central role in the construction of varieties; they are ambient spaces for K3 surfaces and Fano 3-folds. In this talk, I will say in two ways what scrolls are and give examples of some embedded varieties in them.

Wed, 04 Mar 2020
16:00
C1

Automorphisms of free groups and train tracks

Monika Kudlinska
(University of Bristol)
Abstract


 Let phi be an outer automorphism of a free group. A topological representative of phi is a marked graph G along with a homotopy equivalence f: G → G which induces the outer automorphism phi on the fundamental group of G. For any given outer automorphism, the choice of topological representative is far from unique. Handel and Bestvina showed that sufficiently nice automorphisms admit a special type of topological representative called a train track map, whose dynamics can be well understood. 
In this talk I will outline the definition and motivation for train tracks, and give a sketch of Handel and Bestvina’s algorithm for finding them.
 

Subscribe to