Thu, 06 Feb 2020

18:00 - 21:30

The Annual OCIAM Dinner

Professor Oliver Jensen
(University of Manchester)
Further Information

[[{"fid":"57044","view_mode":"media_815x460","fields":{"format":"media_815x460","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false},"type":"media","field_deltas":{"1":{"format":"media_815x460","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false}},"attributes":{"class":"media-element file-media-815x460","data-delta":"1"}}]]

Mon, 03 Feb 2020
12:45
L3

IIB flux non-commutativity and the global structure of field theories

Inaki Garcia-Etxebarria
(Durham)
Abstract

I will discuss the origin of the choice of global structure
--- or equivalently, the choice for which higher p-form symmetries are
present in the theory --- for various (Lagrangian and non-Lagrangian)
field theories in terms of their realization in IIB and M-theory. I
will explain how this choice on the field theory side can be traced
back to the fact that fluxes in string/M-theory do not commute in the
presence of torsion. I will illustrate how these ideas provide a
stringy explanation for the fact that six-dimensional (2,0) and (1,0)
theories generically have a partition vector (as opposed to a partition
function) and explain how this reproduces the classification of N=4
theories provided by Aharony, Seiberg and Tachikawa. Time permitting, I
will also explain how to use these ideas to obtain the algebra of
higher p-form symmetries for 5d SCFTs arising from M-theory at
arbitrary isolated toric singularities, and to classify global forms
for various 4d theories in the presence of duality defects.

Thu, 12 Mar 2020

16:00 - 17:30
L3

Modelling Dementia

Professor Alain Goriely
(Mathematical Institute)
Abstract

Neurodegenerative diseases such as Alzheimer’s or Parkinson’s are devastating conditions with poorly understood mechanisms and no known cure. Yet a striking feature of these conditions is the characteristic pattern of invasion throughout the brain, leading to well-codified disease stages visible to neuropathology and associated with various cognitive deficits and pathologies. In this talk, I will show that by linking new mathematical theories to recent progress in imaging, we can unravel some of the universal features associated with dementia and, more generally, brain functions. In particular, I will outline interesting mathematical problems and ideas that naturally appear in the process.

Thu, 05 Mar 2020

16:00 - 17:30
L3

IAM Seminar TBC

Jessica Williams and Andrew Krause
(Mathematical Institute (University of Oxford))
Abstract


Heterogeneity in Space and Time: Novel Dispersion Relations in Morphogenesis

Dr. Andrew Krause

Motivated by recent work with biologists, I will showcase some results on Turing instabilities in complex domains. This is scientifically related to understanding developmental tuning in the whiskers of mice, and in synthetic quorum-sensing patterning of bacteria. Such phenomena are typically modelled using reaction-diffusion systems of morphogens, and one is often interested in emergent spatial and spatiotemporal patterns resulting from instabilities of a homogeneous equilibrium. In comparison to the well-known effects of how advection or manifold structure impacts the modes which may become unstable in such systems, I will present results on instabilities in heterogeneous systems, reaction-diffusion systems on evolving manifolds, as well as layered reaction-diffusion systems. These contexts require novel formulations of classical dispersion relations, and may have applications beyond developmental biology, such as in understanding niche formation for populations of animals in heterogeneous environments. These approaches also help close the vast gap between the simplistic theory of instability-driven pattern formation, and the messy reality of biological development, though there is still much work to be done in concretely demonstrating such a theory's applicability in real biological systems.
 

Cavity flow characteristics and applications to kidney stone removal

Dr. Jessica Williams


Ureteroscopy is a minimally invasive surgical procedure for the removal of kidney stones. A ureteroscope, containing a hollow, cylindrical working channel, is inserted into the patient's kidney. The renal space proximal to the scope tip is irrigated, to clear stone particles and debris, with a saline solution that flows in through the working channel. We consider the fluid dynamics of irrigation fluid within the renal pelvis, resulting from the emerging jet through the working channel and return flow through an access sheath . Representing the renal pelvis as a two-dimensional rectangular cavity, we investigate the effects of flow rate and cavity size on flow structure and subsequent clearance time of debris. Fluid flow is modelled with the steady incompressible Navier-Stokes equations, with an imposed Poiseuille profile at the inlet boundary to model the jet of saline, and zero-stress conditions on the outlets. The resulting flow patterns in the cavity contain multiple vortical structures. We demonstrate the existence of multiple solutions dependent on the Reynolds number of the flow and the aspect ratio of the cavity using complementary numerical simulations and PIV experiments. The clearance of an initial debris cloud is simulated via solutions to an advection-diffusion equation and we characterise the effects of the initial position of the debris cloud within the vortical flow and the Péclet number on clearance time. With only weak diffusion, debris that initiates within closed streamlines can become trapped. We discuss a flow manipulation strategy to extract debris from vortices and decrease washout time.

 

Thu, 13 Feb 2020

16:00 - 17:30
L3

Nonlinear Schrödinger PDEs and Some Applications in Atomic and Optical Physics

Professor Panos Kevrekidis
(University of Massachusetts)
Abstract

Nonlinear generalizations of the Schrödinger equation are of wide applicability to a range of areas including atomic and optical systems, 
plasma physics and water waves.  In this  talk we revisit some principal excitations in atomic and optical systems (such as Bose-Einstein condensates and photo-refractive crystals), namely dark solitonic fronts in single-component systems, and dark-bright waves in multi-component systems. Upon introducing them and explaining their existence and stability properties in one spatial dimension, we will extend them both in the form of stripes and in that rings in two-dimensions, presenting an alternative (adiabatic-invariant based) formulation of their stability and excitations. We will explore their filamentary dynamics, as well as the states that emerge from their transverse (snaking) instability. Then, we will consider these structures even in three dimensions, in the form of planar, as well as spherical shell wave patterns and generalize our adiabatic invariant formulation there. Finally, time permitting, we will give some glimpses of how some of these dynamical features in 1d and 2d generalize in a multi-orbital, time-dependent quantum setting.

Thu, 06 Feb 2020

18:00 - 19:00
NAPL

Multicellular Calculus

Professor Oliver Jensen
(University of Manchester)
Further Information

The lecture will take place in the Michael Dummett Lecture Theatre (Blue Boar quad, Christ Church).

Thu, 30 Jan 2020

16:00 - 17:30
L3

Feedback control of falling liquid films

Susana Gomes
(University of Warwick)
Abstract

The flow of a thin film down an inclined plane is an important physical phenomenon appearing in many industrial applications, such as coating (where it is desirable to maintain the fluid interface flat) or heat transfer (where a larger interfacial area is beneficial). These applications lead to the need of reliably manipulating the flow in order to obtain a desired interfacial shape. The interface of such thin films can be described by a number of models, each of them exhibiting instabilities for certain parameter regimes. In this talk, I will propose a feedback control methodology based on same-fluid blowing and suction. I use the Kuramoto–Sivashinsky (KS) equation to model interface perturbations and to derive the controls. I will show that one can use a finite number of point-actuated controls based on observations of the interface to stabilise both the flat solution and any chosen nontrivial solution of the KS equation. Furthermore, I will investigate the robustness of the designed controls to uncertain observations and parameter values, and study the effect of the controls across a hierarchy of models for the interface, which include the KS equation, (nonlinear) long-wave models and the full Navier–Stokes equations.

Thu, 23 Jan 2020

16:00 - 17:30
L3

Thermal Fluctuations in Free Surface Nanoflows

James Sprittles
(University of Warwick)
Abstract

The Navier-Stokes paradigm does not capture thermal fluctuations that drive familiar effects such as Brownian motion and are seen to be key to understanding counter-intuitive phenomena in nanoscale interfacial flows.  On the other hand, molecular simulations naturally account for these fluctuations but are limited to exceptionally short time scales. A framework that incorporates thermal noise is provided by fluctuating hydrodynamics, based on the so-called Landau-Lifshitz-Navier-Stokes equations, and in this talk we shall exploit these equations to gain insight into nanoscale free surface flows.  Particular attention will be given to flows with topological changes, such as the coalescence of drops, breakup of jets and rupture of thin liquid films for which both analytic linear stability results and numerical simulations will be presented and compared to the results of molecular dynamics.

Thu, 12 Mar 2020
11:30
C4

Speeds of hereditary properties and mutual algebricity

Caroline Terry
(Chicago)
Abstract

A hereditary graph property is a class of finite graphs closed under isomorphism and induced subgraphs.  Given a hereditary graph property H, the speed of H is the function which sends an integer n to the number of distinct elements in H with underlying set {1,...,n}.  Not just any function can occur as the speed of hereditary graph property.  Specifically, there are discrete ``jumps" in the possible speeds.  Study of these jumps began with work of Scheinerman and Zito in the 90's, and culminated in a series of papers from the 2000's by Balogh, Bollob\'{a}s, and Weinreich, in which essentially all possible speeds of a hereditary graph property were characterized.  In contrast to this, many aspects of this problem in the hypergraph setting remained unknown.  In this talk we present new hypergraph analogues of many of the jumps from the graph setting, specifically those involving the polynomial, exponential, and factorial speeds.  The jumps in the factorial range turned out to have surprising connections to the model theoretic notion of mutual algebricity, which we also discuss.  This is joint work with Chris Laskowski.

Thu, 23 Jan 2020
11:30
C4

On groups definable in fields with commuting automorphisms

Kaisa Kangas
(Helsinki University)
Abstract

 

We take a look at difference fields with several commuting automorphisms. The theory of difference fields with one distinguished automorphism has a model companion known as ACFA, which Zoe Chatzidakis and Ehud Hrushovski have studied in depth. However, Hrushovski has proved that if you look at fields with two or more commuting automorphisms, then the existentially closed models of the theory do not form a first order model class. We introduce a non-elementary framework for studying them. We then discuss how to generalise a result of Kowalski and Pillay that every definable group (in ACFA) virtually embeds into an algebraic group. This is joint work in progress with Zoe Chatzidakis and Nick Ramsey.

Subscribe to