Mon, 18 Nov 2019

19:00 - 20:15

Oxford Mathematics London Public Lecture: Timothy Gowers - Productive generalization: one reason we will never run out of interesting mathematical questions SOLD OUT

Timothy Gowers and Hannah Fry
(University of Cambridge and UCL)
Further Information

Productive generalization: one reason we will never run out of interesting mathematical questions.

Tim Gowers is one of the world's leading mathematicians. He is a Royal Society Research Professor at the Department of Pure Mathematics and Mathematical Statistics at the University of Cambridge, where he also holds the Rouse Ball chair, and is a Fellow of Trinity College, Cambridge. In 1998, he received the Fields Medal for research connecting the fields of functional analysis and combinatorics.

After his lecture Tim will be in conversation with Hannah Fry. Hannah is a lecturer in the Mathematics of Cities at the Centre for Advanced Spatial Analysis at UCL. She is also a well-respected broadcaster and the author of several books including the recently published 'Hello World: How to be Human in the Age of the Machine.'

This lecture is in partnership with the Science Museum in London where it will take place.  

Science Museum, Exhibition Road, London, SW7 2DD

Please email @email to register.

Watch live:
https://facebook.com/OxfordMathematics
https://livestream.com/oxuni/gowers

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Three Oxford Mathematicians have been awarded 2019 London Mathematical Society (LMS) Prizes.

Andrew Wiles has been awarded a De Morgan Medal for his seminal contributions to number theory and for his resolution of ‘Fermat’s Last Theorem’ in particular, as well as for his numerous activities promoting mathematics in general.

Mon, 21 Oct 2019

14:15 - 15:15
L4

The pure cohomology of multiplicative quiver varieties

Kevin McGerty
(Oxford)
Further Information

Multiplicative quiver varieties are a variant of Nakajima's "additive" quiver varieties which were introduced by Crawley-Boevey and Shaw.
They arise naturally in the study of various moduli spaces, in particular in Boalch's work on irregular connections. In this talk we will discuss joint work with Tom Nevins which shows that the tautological classes for these varieties generate the largest possible subalgebra of the cohomology ring, namely the pure part.

 

Whether you are interested in Maths at Oxford. Whether you are interested in Maths. Whether you are just interested. The Oxford Mathematics Open Day is LIVE on July 3 @10am. You can watch it all, or just dip in and out. You can also ask questions in our live chat at 10.30am. Virtually come along. You are very welcome. 

www.facebook.com/OxfordMathematics

or

Mon, 28 Oct 2019
14:15
L4

The Hitchin connection in (almost) arbitrary characteristic.

Johan Martens
(Edinburgh)
Further Information

The Hitchin connection is a flat projective connection on bundles of non-abelian theta-functions over the moduli space of curves, originally introduced by Hitchin in a Kahler context.  We will describe a purely algebra-geometric construction of this connection that also works in (most)positive characteristics.  A key ingredient is an alternative to the Narasimhan-Atiyah-Bott Kahler form on the moduli space of bundles on a curve.  We will comment on the connection with some related topics, such as the Grothendieck-Katz p-curvature conjecture.  This is joint work with Baier, Bolognesi and Pauly.

 

Mon, 14 Oct 2019

14:15 - 15:15
L4

Local stability of Einstein metrics under the Ricci iteration

Tim Buttsworth
(Cornell)
Further Information

A Ricci iteration is a sequence of Riemannian metrics on a manifold such that every metric in the sequence is equal to the Ricci curvature of the next metric. These sequences of metrics were introduced by Rubinstein to provide a discretisation of the Ricci flow. In this talk, I will discuss the relationship between the Ricci iteration and the Ricci flow. I will also describe a recent result concerning the existence and convergence of Ricci iterations close to certain Einstein metrics. (Joint work with Max Hallgren)

Subscribe to