Thu, 06 Jun 2019

12:00 - 13:00
L4

The geometry of measures solving a linear PDE

Adolfo Arroyo-Rabasa
(Dept. Mathematics, University of Warwick)
Abstract

Function solutions to linear PDEs often carry rigidity properties directly associated to the equation they satsify. However, the realm of solutions covers a much larger sets of solutions. For instance, we can speak of measure solutions, as opposed to classical $C^\infty$ functions or even $L^p$ functions. It is only logical to expect that the “better” space the solution lives in, the more rigid its properties will be.

Measure solutions lie just at a comfortable half of this threshold: it is a sufficently large space which allows for a rich range of new structures; but is sufficiently rigid to preserve a meaningful geometrical pattern. For example, have you ever wondered how gradients look like in the space of measures? What about other PDE structures? In this talk I will discuss these general questions, a few examples of them, and a new theoretical approach to its understanding via PDE theory, harmonic analysis, and geometric measure theory methods.

Fri, 31 May 2019

10:00 - 11:00
L3

An optimal control approach to Formula 1 lap simulation

Mike Beeson, Matt Davidson and James Rogers
(Racing Point F1)
Abstract

In Formula 1 engineers strive to produce the fastest car possible for their drivers. A lap simulation provides an objective evaluation of the performance of the car and the subsequent lap time achieved. Using this information, engineers aim to test new car concepts, determine performance limitations or compromises, and identify the sensitivity of performance to car setup parameters.

The latest state of the art lap simulation techniques use optimal control approaches. Optimisation methods are employed to derive the optimal control inputs of the car that achieve the fastest lap time within the constraints of the system. The resulting state trajectories define the complete behaviour of the car. Such approaches aim to create more robust, realistic and powerful simulation output compared to traditional methods.

In this talk we discuss our latest work in this area. A dynamic vehicle model is used within a free-trajectory solver based on direct optimal control methods. We discuss the reasons behind our design choices, our progress to date, and the issues we have faced during development. Further, we look at the short and long term aims of our project and how we wish to develop our mathematical methods in the future.

The recent votes in the House of Commons on Brexit are a type of high-dimensional data which is hard to understand, as each MP votes on several motions. Oxford Statistician and Mathematician Florian Klimm has illustrated such data as 'bipartite networks’, in which nodes represent either MPs or motions which are connected if an MP voted in favour of a motion. In this layout, MPs that voted similarly are close together. We can also explore how single MPs voted and how parties are divided or unified.

Thu, 13 Jun 2019

12:00 - 13:00
L4

On the scaling limit of Onsager's molecular model for liquid crystals

Yuning Liu
(NYU Shanghai)
Abstract

We study the small Deborah number limit of the Doi-Onsager equation for the dynamics of nematic liquid crystals. This is a Smoluchowski-type equation that characterizes the evolution of a number density function, depending upon both particle position and its orientation vector, which lies on the unit sphere. We prove that, in the low temperature regime, when the Deborah number tends to zero, the family of solutions with rough initial data near local equilibria will converge to a local equilibrium distribution prescribed by a weak solution of the harmonic map heat flow into the sphere. This flow is a special case of the gradient flow to the Oseen-Frank energy functional for nematic liquid crystals and the existence of its global weak solution was first obtained by Y.M Chen, using Ginzburg-Landau approximation.  The key ingredient of our result is to show the strong compactness of the family of number density functions and the proof relies on the strong compactness of the corresponding second moment (or the Q-tensor), a spectral decomposition of the linearized operator near the limiting local equilibrium distribution, as well as the energy dissipation estimates.  This is a joint work with Wei Wang in Zhejiang university.
 

Mon, 17 Jun 2019

15:45 - 16:45
L3

Mathematical and computational challenges in interdisciplinary bioscience: efficient approaches for stochastic models of biological processes.

RUTH BAKER
(University of Oxford)
Abstract

Simple mathematical models have had remarkable successes in biology, framing how we understand a host of mechanisms and processes. However, with the advent of a host of new experimental technologies, the last ten years has seen an explosion in the amount and types of data now being generated. Increasingly larger and more complicated processes are now being explored, including large signalling or gene regulatory networks, and the development, dynamics and disease of entire cells and tissues. As such, the mechanistic, mathematical models developed to interrogate these processes are also necessarily growing in size and complexity. These detailed models have the potential to provide vital insights where data alone cannot, but to achieve this goal requires meeting significant mathematical challenges. In this talk, I will outline some of these challenges, and recent steps we have taken in addressing them.

Mon, 17 Jun 2019

14:15 - 15:15
L3

Path Developments and Tail Asymptotics of Signature

XI GENG
(University of Melbourne)
Abstract

It is well known that a rough path is uniquely determined by its signature (the collection of global iterated path integrals) up to tree-like pieces. However, the proof the uniqueness theorem is non-constructive and does not give us information about how quantitative properties of the path can be explicitly recovered from its signature. In this talk, we examine the quantitative relationship between the local p-variation of a rough path and the tail asymptotics of its signature for the simplest type of rough paths ("line segments"). What lies at the core of the work a novel technique based on the representation theory of complex semisimple Lie algebras. 

This talk is based on joint work with Horatio Boedihardjo and Nikolaos Souris

Subscribe to