Thu, 18 Oct 2018

12:00 - 13:00
L4

On the Existence of Solutions to the Two-Fluids Systems

Ewelina Zatorska
(University College London)
Abstract

In this talk I will present the recent developments in the topic of existence of solutions to the two-fluid systems. I will discuss the application of approach developed by P.-L. Lions and E. Feireisl and explain the limitations of this technique in the context of multi-component flow models. A particular example of such a model is two-fluids Stokes system with single velocity field and two densities, and with an algebraic pressure law closure. The existence result that uses the compactness criterion introduced for the Navier-Stokes system by D. Bresch and P.-E. Jabin will be presented. I will also mention an innovative construction of solutions relying on the G. Crippa and C. DeLellis stability estimates for the transport equation.

Thu, 11 Oct 2018

12:00 - 13:00
L4

Deep Neural Networks and PDEs: Approximation Theory and Structural Properties

Philipp Petersen
(University of Oxford)
Abstract

Novel machine learning techniques based on deep learning, i.e., the data-driven manipulation of neural networks, have reported remarkable results in many areas such as image classification, game intelligence, or speech recognition. Driven by these successes, many scholars have started using them in areas which do not focus on traditional machine learning tasks. For instance, more and more researchers are employing neural networks to develop tools for the discretisation and solution of partial differential equations. Two reasons can be identified to be the driving forces behind the increased interest in neural networks in the area of the numerical analysis of PDEs. On the one hand, powerful approximation theoretical results have been established which demonstrate that neural networks can represent functions from the most relevant function classes with a minimal number of parameters. On the other hand, highly efficient machine learning techniques for the training of these networks are now available and can be used as a black box. In this talk, we will give an overview of some approaches towards the numerical treatment of PDEs with neural networks and study the two aspects above. We will recall some classical and some novel approximation theoretical results and tie these results to PDE discretisation. Afterwards, providing a counterpoint, we analyse the structure of network spaces and deduce considerable problems for the black box solver. In particular, we will identify a number of structural properties of the set of neural networks that render optimisation over this set especially challenging and sometimes impossible. The talk is based on joint work with Helmut Bölcskei, Philipp Grohs, Gitta Kutyniok, Felix Voigtlaender, and Mones Raslan

Fri, 30 Nov 2018

14:00 - 15:00
South Mezz Circulation

Working together: end-of-term mathematical board games

Abstract

Would you like to meet some of your fellow students, and some graduate students and postdocs, in an informal and relaxed atmosphere, while building your communication skills?  In this Friday@2 session, you'll be able to play a selection of board games, meet new people, and practise working together.  What better way to spend the final Friday afternoon of term?!  We'll play the games in the south Mezzanine area of the Andrew Wiles Building, outside L3.

Fri, 23 Nov 2018

14:00 - 15:00
L1

Dissertation: presenting a thesis

Dr Richard Earl
Abstract

This session is particularly aimed at fourth-year and OMMS students who are completing a dissertation this year. The talk will be given by Dr Richard Earl who chairs Projects Committee. For many of you this will be the first time you have written such an extended piece on mathematics. The talk will include advice on planning a timetable, managing the  workload, presenting mathematics, structuring the dissertation and creating a narrative, providing references and avoiding plagiarism.

Fri, 16 Nov 2018

14:00 - 15:00
L1

Mathematics: the past, present and future - "The Goldbach Conjecture"

Prof Ben Green
Abstract

The Goldbach conjecture is a famous unsolved problem in mathematics. It asks whether every even number greater than or equal to 4 is the sum of two primes. I will discuss some of the history of the problem, explaining among other things why the answer is surely yes, and also why this appears to be very hard to prove.

 
Fri, 26 Oct 2018

14:00 - 15:00
L1

Studying independently

Dr Vicky Neale
Abstract

New undergraduates often find that they have a lot more time to spend on independent work than they did at school or college.  But how can you use that time well?  When your lecturers say that they expect you to study your notes between lectures, what do they really mean?  There is research on how mathematicians go about reading maths effectively.  We'll look at a technique that has been shown to improve students' comprehension of proofs, and in this interactive workshop we'll practise together on some examples.  Please bring a pen/pencil and paper! 

This session is likely to be most relevant for first-year undergraduates, but all are welcome, especially those who would like to improve how they read and understand proofs.

Subscribe to