Tue, 31 Jan 2017
14:30
L5

Sync-Rank: Robust ranking, constrained ranking and rank aggregation via eigenvector and SDP synchronization

Mihai Cucuringu
(University of Oxford)
Abstract

We consider the classic problem of establishing a statistical ranking of a set of n items given a set of inconsistent and incomplete pairwise comparisons between such items. Instantiations of this problem occur in numerous applications in data analysis (e.g., ranking teams in sports data), computer vision, and machine learning. We formulate the above problem of ranking with incomplete noisy information as an instance of the group synchronization problem over the group SO(2) of planar rotations, whose usefulness has been demonstrated in numerous applications in recent years. Its least squares solution can be approximated by either a spectral or a semidefinite programming (SDP) relaxation, followed by a rounding procedure. We perform extensive numerical simulations on both synthetic and real-world data sets (Premier League soccer games, a Halo 2 game tournament and NCAA College Basketball games) showing that our proposed method compares favorably to other algorithms from the recent literature.

We propose a similar synchronization-based algorithm for the rank-aggregation problem, which integrates in a globally consistent ranking pairwise comparisons given by different rating systems on the same set of items. We also discuss the problem of semi-supervised ranking when there is available information on the ground truth rank of a subset of players, and propose an algorithm based on SDP which recovers the ranks of the remaining players. Finally, synchronization-based ranking, combined with a spectral technique for the densest subgraph problem, allows one to extract locally-consistent partial rankings, in other words, to identify the rank of a small subset of players whose pairwise comparisons are less noisy than the rest of the data, which other methods are not able to identify. 
 

The IceCube Neutrino Observatory: instrumentation and online systems
Aartsen, M Ackermann, M Adams, J Sarkar, S Et al., E Journal of Instrumentation volume 12 issue 3 (14 Mar 2017)
Mon, 16 Jan 2017

15:45 - 16:45
L6

Coarse embeddings, and how to avoid them

David Hume
(Oxford)
Abstract

Coarse embeddings occur completely naturally in geometric group theory: every finitely generated subgroup of a finitely generated group is coarsely embedded. Since even very nice classes of groups - hyperbolic groups or right-angled Artin groups for example - are known to have 'wild' collections of subgroups, there are precious few invariants that one may use to prove a statement of the form '$H$ does not coarsely embed into $G$' for two finitely generated groups $G,H$.
The growth function and the asymptotic dimension are two coarse invariants which which have been extensively studied, and a more recent invariant is the separation profile of Benjamini-Schramm-Timar.

In this talk I will describe a new spectrum of coarse invariants, which include both the separation profile and the growth function, and can be used to tackle many interesting problems, for instance: Does there exist a coarse embedding of the Baumslag-Solitar group $BS(1,2)$ or the lamplighter group $\mathbb{Z}_2\wr\mathbb{Z}$ into a hyperbolic group?

This is part of an ongoing collaboration with John Mackay and Romain Tessera.
 

Mon, 23 Jan 2017

16:00 - 17:00
L4

Linearisation of multi-well energies

Mariapia Palombaro
(University of Sussex)
Abstract

Linear elasticity can be rigorously derived from finite elasticity in the case of small loadings in terms of \Gamma-convergence. This was first done by Dal Maso-Negri-Percivale in the case of one-well energies with super-quadratic growth. This has been later generalised to different settings, in particular to the case of multi-well energies where the distance between the wells is very small (comparable to the size of the load). I will discuss recent developments in the case when the distance between the wells is arbitrary. In this context linear elasticity can be derived by adding to the multi-well energy a singular higher order term which penalises jumps from one well to another. The size of the singular term has to satisfy certain scaling assumptions which turn out to be optimal. (This is joint work with Alicandro, Dal Maso and Lazzaroni.) 

Effect of annealing on the mechanical properties and the degradation of electrospun polydioxanone filaments
Abhari, R Mouthuy, P Zargar, N Brown, C Carr, A Journal of the Mechanical Behavior of Biomedical Materials volume 67 127-134 (01 Jan 2016)
Fri, 03 Mar 2017

14:00 - 14:45
L3

En route to mending broken hearts

Prof Paul Riley
(DPAG University of Oxford)
Abstract

We adopt the paradigm of understanding how the heart develops during pregnancy as a first principal to inform on adult heart repair and regeneration. Our target for cell-based repair is the epicardium and epicardium-derived cells (EPDCs) which line the outside of the forming heart and contribute vascular endothelial and smooth muscle cells to the coronary vasculature, interstitial fibroblasts and cardiomyocytes. The epicardium can also act as a source of signals to condition the growth of the underlying embryonic heart muscle. In the adult heart, whilst the epicardium is retained, it is effectively quiescent. We have sought to extrapolate the developmental potential of the epicardium to the adult heart following injury by stimulating dormant epicardial cells to give rise to new muscle and vasculature. In parallel, we seek to modulate the local environment into which the new cells emerge: a cytotoxic mixture of inflammation and fibrosis which prevents cell engraftment and integration with survived heart tissue. To this end we manipulate the lymphatic vessels in the heart given that, elsewhere in the body, the lymphatics survey the immune system and modulate inflammation at peripheral injury sites. We recently described the development of the cardiac lymphatic vasculature and revealed in the adult heart that they undergo increased vessel sprouting (lymphangiogenesis) in response to injury, to improve function, remodelling and fibrosis. We are currently investigating whether increased lymphangiogenesis functions to clear immune cells and constrain the reparative response for optimal healing.

Fri, 24 Feb 2017

14:00 - 15:00
L3

Nanopore sequencing & informatic challenges

Dr Gordon Sanghera
(CEO of Oxford Nanopore Technologies)
Abstract

Oxford Nanopore Technologies aim to enable the analysis of any living thing, by any person, in any environment. The world's first and only nanopore DNA
sequencer, the MinION is a portable, real time, long-read, low cost device that has been designed to bring easy biological analyses to anyone, whether in
scientific research, education or a range of real world applications such as disease/pathogen surveillance, environmental monitoring, food chain
surveillance, self-quantification or even microgravity biology. Gordon will talk the about the technology, applications and future direction.
Stuart will talk about the nanopore signal, computational methods and informatics challenges associated with reading DNA directly.

Subscribe to