14:15
Hilbert schemes for fourfolds and Quot-schemes for surfaces
Abstract
Counting coherent sheaves on Calabi--Yau fourfolds is a subject in its infancy. An evidence of this is given by how little is known about perhaps the simplest case - counting ideal sheaves of length $n$. On the other hand, the parallel story for surfaces while with many open questions has seen many new results, especially in the direction of understanding virtual integrals over Quot-schemes. Motivated by the conjectures of Cao--Kool and Nekrasov, we study virtual integrals over Hilbert schemes of points of top Chern classes $c_n(L^{[n]})$ and their K-theoretic refinements. Unlike lower-dimensional sheaf-counting theories, one also needs to pay attention to orientations. In this, we rely on the conjectural wall-crossing framework of Joyce. The same methods can be used for Quot-schemes of surfaces and we obtain a generalization of the work of Arbesfeld--Johnson--Lim--Oprea--Pandharipande for a trivial curve class. As a result, there is a correspondence between invariants for surfaces and fourfolds in terms of a universal transformation.
Human-machine interaction models and robo-advising
Abstract
In my talk, I will introduce a family of human-machine interaction (HMI) models in optimal portfolio construction (robo-advising). Modeling difficulties stem from the limited ability to quantify the human’s risk preferences and describe their evolution, but also from the fact that the stochastic environment, in which the machine optimizes, adapts to real-time incoming information that is exogenous to the human. Furthermore, the human’s risk preferences and the machine’s states may evolve at different scales. This interaction creates an adaptive cooperative game with both asymmetric and incomplete information exchange between the two parties.
As a result, challenging questions arise on, among others, how frequently the two parties should communicate, what information can the machine accurately detect, infer and predict, how the human reacts to exogenous events, how to improve the inter-linked reliability between the human and the machine, and others. Such HMI models give rise to new, non-standard optimization problems that combine adaptive stochastic control, stochastic differential games, optimal stopping, multi-scales and learning.
High-dimensional, multiscale online changepoint detection
Abstract
We introduce a new method for high-dimensional, online changepoint detection in settings where a $p$-variate Gaussian data stream may undergo a change in mean. The procedure works by performing likelihood ratio tests against simple alternatives of different scales in each coordinate, and then aggregating test statistics across scales and coordinates. The algorithm is online in the sense that both its storage requirements and worst-case computational complexity per new observation are independent of the number of previous observations. We prove that the patience, or average run length under the null, of our procedure is at least at the desired nominal level, and provide guarantees on its response delay under the alternative that depend on the sparsity of the vector of mean change. Simulations confirm the practical effectiveness of our proposal, which is implemented in the R package 'ocd', and we also demonstrate its utility on a seismology data set.
Kinetic Brownian motion in the diffeomorphism group of a closed Riemannian manifold
Abstract
In its simplest instance, kinetic Brownian in Rd is a C1 random path (mt, vt) with unit velocity vt a Brownian motion on the unit sphere run at speed a > 0. Properly time rescaled as a function of the parameter a, its position process converges to a Brownian motion in Rd as a tends to infinity. On the other side the motion converges to the straight line motion (= geodesic motion) when a goes to 0. Kinetic Brownian motion provides thus an interpolation between geodesic and Brownian flows in this setting. Think now about changing Rd for the diffeomorphism group of a fluid domain, with a velocity vector now a vector field on the domain. I will explain how one can prove in this setting an interpolation result similar to the previous one, giving an interpolation between Euler’s equations of incompressible flows and a Brownian-like flow on the diffeomorphism group.
Oxford Mathematician Ben Green on a tale of conjectures, mistaken assumptions and eventual solutions: a tale of mathematics.
"The famous discrete mathematician Ron Graham sadly passed away last year. I did not know him well, but I had the pleasure of meeting him a few times. On the first such occasion, in Vancouver in 2004, he mentioned one of his favourite open questions over lunch. This concerns the size of certain "van der Waerden numbers", a kind of arithmetic variant of graph Ramsey numbers.
09:00
Learning developmental path signature features with deep learning framework for infant cognitive scores prediction
Abstract
Path signature has unique advantages on extracting high-order differential features of sequential data. Our team has been studying the path signature theory and actively applied it to various applications, including infant cognitive score prediction, human motion recognition, hand-written character recognition, hand-written text line recognition and writer identification etc. In this talk, I will share our most recent works on infant cognitive score prediction using deep path signature. The cognitive score can reveal individual’s abilities on intelligence, motion, language abilities. Recent research discovered that the cognitive ability is closely related with individual’s cortical structure and its development. We have proposed two frameworks to predict the cognitive score with different path signature features. For the first framework, we construct the temporal path signature along the age growth and extract signature features of developmental infant cortical features. By incorporating the cortical path signature into the multi-stream deep learning model, the individual cognitive score can be predicted with missing data issues. For the second framework, we propose deep path signature algorithm to compute the developmental feature and obtain the developmental connectivity matrix. Then we have designed the graph convolutional network for the score prediction. These two frameworks have been tested on two in-house cognitive data sets and reached the state-of-the-art results.
The Modular Representation Theory of the Temperley-Lieb Algebras
Abstract
The Temperley-Lieb algebra is a diagrammatic algebra - defined on a basis of "string diagrams" with multiplication given by "joining the diagrams together". It first arose as an algebra of operators in statistical mechanics but quickly found application in knot theory (where Jones used it to define his famed polynomial) and the representation theory of $sl_2$. From the outset, the representation theory of the Temperley-Lieb algebra itself has been of interest from a physics viewpoint and in characteristic zero it is well understood. In this talk we will explore the representation theory over mixed characteristic (i.e. over positive characteristic fields and specialised at a root of unity). This gentle introduction will take the listener through the beautifully fractal-like structure of the algebras and their cell modules with plenty of examples.