Fri, 30 Apr 2021

15:00 - 16:00
Virtual

Sketching Persistence Diagrams, Don Sheehy

Don Sheehy
(North Carolina State)
Further Information

Don Sheehy is an Associate Professor of Computer Science at North Carolina State University.  He received his B.S.E. from Princeton University and his Ph.D. in Computer Science from Carnegie Mellon University.   He spent two years as a postdoc at Inria Saclay in France.  His research is in algorithms and data structures in computational geometry and topological data analysis.  

Abstract

Given a persistence diagram with n points, we give an algorithm that produces a sequence of n persistence diagrams converging in bottleneck distance to the input diagram, the ith of which has i distinct (weighted) points and is a 2-approximation to the closest persistence diagram with that many distinct points. For each approximation, we precompute the optimal matching between the ith and the (i+1)st. Perhaps surprisingly, the entire sequence of diagrams as well as the sequence of matchings can be represented in O(n) space. The main approach is to use a variation of the greedy permutation of the persistence diagram to give good Hausdorff approximations and assign weights to these subsets. We give a new algorithm to efficiently compute this permutation, despite the high implicit dimension of points in a persistence diagram due to the effect of the diagonal. The sketches are also structured to permit fast (linear time) approximations to the Hausdorff distance between diagrams -- a lower bound on the bottleneck distance. For approximating the bottleneck distance, sketches can also be used to compute a linear-size neighborhood graph directly, obviating the need for geometric data structures used in state-of-the-art methods for bottleneck computation.

Thu, 10 Jun 2021

13:00 - 14:00
Virtual

Dynamic Fluid-Solid Interactions at the Capillary Scale

Daniel Harris
(Brown University)
Abstract

Understanding the motion of small bodies at a fluid interface has relevance to a range of natural systems and technological applications. In this talk, we discuss two systems where capillarity and fluid inertia govern the dynamics of millimetric particles at a fluid interface.

In the first part, we present a study of superhydrophobic spheres impacting a quiescent water bath.  Under certain conditions particles may rebound completely from the interface - an outcome we characterize in detail through a synthesis of experiments, modeling, and direct numerical simulation.  In the second half, we introduce a system wherein millimetric disks trapped at a fluid interface are vertically oscillated and spontaneously self-propel.  Such "capillary surfers" interact with each other via their collective wavefield and self-assemble into a myriad of cooperative dynamic states.  Our experimental observations are well captured by a first theoretical model for their dynamics, laying the foundation for future investigations of this highly tunable active system.

Thu, 03 Jun 2021

12:00 - 13:00
Virtual

Surfactants in drop-on-demand inkjet printing (Antonopoulou). An optic ray theory for nerve durotaxis (Oliveri).

Eva Antonopoulou & Hadrien Olivieri
(Mathematical Institute (University of Oxford))
Abstract

Eva Antonopoulou

Surfactants in drop-on-demand inkjet printing

The rapid development of new applications for inkjet printing and increasing complexity of the inks has created a demand for in silico optimisation of the ink jetting performance. Surfactants are often added to aqueous inks to modify the surface tension. However, the time-scales for drop formation in inkjet printing are short compared to the time-scales of the surfactant diffusion resulting a non-uniform surfactant distribution along the interface leading to surface tension gradients. We present both experiments and numerical simulations of inkjet break-up and drop formation in the presence of surfactants investigating both the surfactant transport on the interface and the influence of Marangoni forces on break-up dynamics. The numerical simulations were conducted using a modified version of the Lagrangian finite element developed by our previous work by including the solution for the transport equation for the surfactants over the free surface. During the initial phase of a “pull-push-pull” drive waveform, surfactants are concentrated at the front of the main drop with the trailing ligament being almost surfactant free. The resulting Marangoni stresses act to delay and can even prevent the break-off of the main drop from the ligament. We also examine and present some initial results on the effects of surfactants on the shape oscillations  of the main drop. Although there is little change to the oscillation frequency, the presence of surfactants significantly increases the rate of decay due to the rigidification of the surface, by modifying the internal flow within the droplet and enhancing the viscous dissipation.

Hadrien Oliveri

An optic ray theory for nerve durotaxis

During the development of the nervous system, neurons extend bundles of axons that grow and meet other neurons to form the neuronal network. Robust guidance mechanisms are needed for these bundles to migrate and reach their functional target. Directional information depends on external cues such as chemical or mechanical gradients. Unlike chemotaxis that has been extensively studied, the role and mechanism of durotaxis, the directed response to variations in substrate rigidity, remain unclear. We model bundle migration and guidance by rigidity gradients by using the theory of morphoelastic rods. We show that at a rigidity interface, the motion of axon bundles follows a simple behavior analogous to optic ray theory and obeys Snell’s law for refraction and reflection. We use this powerful analogy to demonstrate that axons can be guided by the equivalent of optical lenses and fibers created by regions of different stiffnesses.

Thu, 27 May 2021

12:00 - 13:00
Virtual

Elastocapillary singularities in wetting & creasing

Jacco Snoeijer
(University of Twente)
Abstract

Soft elastic interfaces can strongly deform under the influence of external forces, and can even exhibit elastic singularities. Here we discuss two cases where such singularities occur. First, we describe surface creases that form under compression (or swelling) of an elastic medium. Second, we consider the elastocapillary ridges that form when a soft substrate is wetted by a liquid drop. Analytical descriptions are presented and compared to experiments. We reveal that, like for liquid interfaces, the surface tension of the solid is a key factor in shaping the surface, and determines the nature of the singularity.

Thu, 20 May 2021

12:00 - 13:00
Virtual

Next generation mesoscopic models for neural activity

Áine Byrne
(University College Dublin)
Abstract

The Wilson–Cowan population model of neural activity has greatly influenced our understanding of the mechanisms for the generation of brain rhythms and the emergence of structured brain activity. As well as the many insights that have been obtained from its mathematical analysis, it is now widely used in the computational neuroscience community for building large scale in silico brain networks that can incorporate the increasing amount of knowledge from the Human Connectome Project. In this talk, I will introduce a new neural population model in the spirit of that originally developed by Wilson and Cowan, albeit with the added advantage that it can account for the phenomena of event related synchronisation and de-synchronisation. This derived mean field model provides a dynamic description for the evolution of synchrony, as measured by the Kuramoto order parameter, in a large population of quadratic integrate-and-fire model neurons. As in the original Wilson–Cowan framework, the population firing rate is at the heart of our new model; however, in a significant departure from the sigmoidal firing rate function approach, the population firing rate is now obtained as a real-valued function of the complex valued population synchrony measure. To highlight the usefulness of this next generation Wilson–Cowan style model I will show how it can be deployed in a number of neurobiological contexts, providing understanding of the changes in power-spectra observed in EEG/MEG neuroimaging studies of motor-cortex during movement, insights into patterns of functional-connectivity observed during rest and their disruption by transcranial magnetic stimulation, and to describe wave propagation across cortex.

Thu, 13 May 2021

12:00 - 13:00
Virtual

Optimal electrostatic control of fluid films

Alex Wray
(Strathclyde)
Abstract

Controlling film flows has long been a central target for fluid dynamicists due to its numerous applications, in fields from heat exchangers to biochemical recovery, to semiconductor manufacture. However, despite its significance in the literature, most analyses have focussed on the “forward” problem: what effect a given control has on the flow. Often these problems are already complex, incorporating the - generally multiphysical - interplay of hydrodynamic phenomena with the mechanism of control. Indeed, many systems still defy meaningful agreement between models and experiments.
 
The inverse problem - determining a suitable control scheme for producing a specified flow - is considerably harder, and much more computationally expensive (often involving thousands of calculations of the forward problem). Performing such calculations for the full Navier-Stokes problem is generally prohibitive.

We examine the use of electric fields as a control mechanism. Solving the forward problem involves deriving a low-order model that turns out to be accurate even deep into the shortwave regime. We show that the weakly-nonlinear problem is Kuramoto-Sivashinsky-like, allowing for greater analytical traction. The fully nonlinear problem can be solved numerically via the use of a rapid solver, enabling solution of both the forward and adjoint problems on sub-second timescales, allowing for both terminal and regulation optimal control studies to be implemented. Finally, we examine the feasibility of controlling direct numerical simulations using these techniques.

Thu, 29 Apr 2021

12:00 - 13:00
Virtual

Bubble propagation in modified Hele-Shaw channels

Alice Thompson
(Manchester)
Abstract

The propagation of a deformable air finger or bubble into a fluid-filled channel with an imposed pressure gradient was first studied by Saffman and Taylor. Assuming large aspect ratio channels, the flow can be depth-averaged and the free-boundary problem for steady propagation solved by conformal mapping. Famously, at zero surface tension, fingers of any width may exist, but the inclusion of vanishingly small surface tension selects symmetric fingers of discrete finger widths. At finite surface tension, Vanden-Broeck later showed that other families of 'exotic' states exist, but these states are all linearly unstable.

In this talk, I will discuss the related problem of air bubble propagation into rigid channels with axially-uniform, but non-rectangular, cross-sections. By including a centred constriction in the channel, multiple modes of propagation can be stabilised, including symmetric, asymmetric and oscillatory states, with a correspondingly rich bifurcation structure. These phenomena can be predicted via depth-averaged modelling, and also observed in our experiments, with quantitative agreement between the two in appropriate parameter regimes. This agreement provides insight into the physical mechanisms underlying the observed behaviour. I will outline our efforts to understand how the system dynamics is affected by the presence of nearby unstable solution branches acting as edge states. Finally, I will discuss how feedback control and control-based continuation could be used for direct experimental observation of stable or unstable modes.

Thu, 06 May 2021

12:00 - 13:30
Virtual

Bio-Inspired Noise Control

Lorna Ayton
(Cambridge)
Abstract

Noise is generated in an aerodynamic setting when flow turbulence encounters a structural edge, such as at the sharp trailing edge of an aerofoil. The generation of this noise is unavoidable, however this talk addresses various ways in which it may be mitigated through altering the design of the edge. The alterations are inspired by natural silent fliers: owls. A short review of how trailing-edge noise is modelled will be given, followed by a discussion of two independent adaptations; serrations, and porosity. The mathematical impacts of the adaptations to the basic trailing-edge model will be presented, along with the physical implications they have on noise generation and control.

Fri, 28 May 2021

10:00 - 12:00
Virtual

Vortex Singularities in Ginzburg-Landau Type Problems - Lecture 3 of 3

Professor Radu Ignat
(Institut de Mathématiques de Toulouse)
Further Information

3 x 2 hour Lectures via Zoom (see email of 10th May 2021 for details)

Aimed at: The course is addressed to postgraduate students, postdocs and other members of the Mathematical Institute. It is an introduction to concentration phenomenon around vortices in Ginzburg-Landau type problems. The aim is to present topological methods (based on Jacobian, winding number...) that allow for detection of vortices and computation of the interaction energy between them. The purpose of this course is to analyse vortex singularities appearing in Ginzburg-Landau type problems.

The lecture will be via Zoom and the link was also sent out in an email on 10th May 

 

 

 

Subscribe to