There is no doubt about it, Santa is a mathematician. He must be, having every year to calculate the best way to get presents to so many homes in such a short space of time.

So in homage to such genius, we have two Santa themed puzzles for you to solve. You can find the answers at the bottom of the page (but try not to look too quickly).  

Mon, 07 Mar 2022
15:30
L5

Some applications of the geometry of surfaces to Biology

Joel Hass
(University of California Davis)
Abstract

Abstract: Almost everything we encounter in our 3-dimensional world is a surface - the outside of a solid object. Comparing the shapes of surfaces is, not surprisingly, a fundamental problem in both theoretical and applied mathematics. Results from the mathematical theory of surfaces are now being used to study objects such as bones, brain cortices, proteins and biomolecules.  This talk will discuss recent joint work with Patrice Koehl that introduces a new metric on the space of Riemannian surfaces of genus-zero and some applications to biological surfaces.

Mon, 28 Feb 2022
15:30
L5

The centres of String 2-groups

Christoph Weis
Abstract

Let $G$ be a compact connected Lie group and $k \in H^4(BG,\mathbb{Z})$ a cohomology class. The String 2-group $G_k$ is the central extension of $G$ by the smooth 2-group $BU(1)$ classified by $k$. It has a close relationship to the level $k$ extension of the loop group $LG$.
We will introduce smooth 2-groups and the associated notion of centre. We then compute this centre for the String 2-groups, leveraging the power of maximal tori familiar from classical Lie theory.
The centre turns out to recover the invertible positive energy representations of $LG$ at level $k$ (as long as we exclude factors of $E_8$ at level 2).

 

Mon, 21 Feb 2022
15:30
L5

Trisected 4-manifolds and link surgery

Abigail Thompson
Abstract

Gay and Kirby formulated a new way to decompose a (closed, orientable) 4-manifold M, called a trisection.    I’ll describe how to translate from a classical framed link diagram for M to a trisection diagram.   The links so obtained lie on Heegaard surfaces in the 3-sphere,  and have surgeries yielding some number of copies of S^1XS^2.   We can describe families of “elementary" links which have such surgeries, and one can ask whether all links with few components having such surgeries lie in these families.  The answer is almost certainly no.   We nevertheless give a small piece of evidence in favor of a positive answer for a special family of 2-component links.    This is joint work with Rob Kirby.  Gay and Kirby formulated a new way to decompose a (closed, orientable) 4-manifold M, called a trisection.    I’ll describe how to translate from a classical framed link diagram for M to a trisection diagram.   The links so obtained lie on Heegaard surfaces in the 3-sphere,  and have surgeries yielding some number of copies of S^1XS^2.   We can describe families of “elementary" links which have such surgeries, and one can ask whether all links with few components having such surgeries lie in these families.  The answer is almost certainly no.   We nevertheless give a small piece of evidence in favor of a positive answer for a special family of 2-component links.    This is joint work with Rob Kirby.  

Mon, 14 Feb 2022
15:30
L5

Rigidity of minimal Lagrangian diffeomorphisms between spherical cone surfaces

Andrea Seppi
(University of Grenoble-Alpes)
Abstract

Minimal Lagrangian maps play an important role in Teichmüller theory, with important existence and uniqueness results for hyperbolic surfaces obtained by Labourie, Schoen, Bonsante-Schlenker, Toulisse and others. In positive curvature, it is thus natural to ask whether one can find minimal Lagrangian diffeomorphisms between two spherical surfaces with cone points. In this talk we will show that the answer is negative, unless the two surfaces are isometric. As an application, we obtain a generalization of Liebmann’s theorem for branched immersions of constant curvature in Euclidean space. This is joint work with Christian El Emam.

 

Mon, 07 Feb 2022
15:30
C3

Free-by-cyclic groups and their automorphisms

Naomi Andrew
(Southampton University)
Abstract

Free-by-cyclic groups are easy to define – all you need is an automorphism of F_n. Their properties (for example hyperbolicity, or relative hyperbolicity) depend on this defining automorphism, but not always transparently. I will introduce these groups and some of their properties, and connect some to properties of the defining automorphism. I'll then discuss some ideas and techniques we can use to understand their automorphisms, including finding useful actions on trees and relationships with certain subgroups of Out(F_n). (This is joint work with Armando Martino.)

Mon, 31 Jan 2022
15:30
Virtual

Localization and decomposition

Rufus Willett
(Hawaii)
Abstract

Let X be a closed Riemannian manifold, and represent the algebra C(X) of continuous functions on X on the Hilbert space L^2(X) by multiplication.  Inspired by the heat kernel proof of the Atiyah-Singer index theorem, I'll explain how to describe K-homology (i.e. the dual theory to Atiyah-Hirzebruch K-theory) in terms of parametrized families of operators on L^2(X) that get more and more 'local' in X as time tends to infinity.

I'll then switch perspectives from C(X) -- the prototypical example of a commutative C*-algebra -- to noncommutative C*-algebras coming from discrete groups, and explain how the underlying large-scale geometry of the groups can give rise to approximate 'decompositions' of the C*-algebras.  I'll then explain how to use these decompositions and localization in the sense above to compute K-homology, and the connection to some conjectures in topology, geometry, and C*-algebra theory.

Mon, 24 Jan 2022
15:30
Virtual

Deformations of ordinary Calabi-Yau varieties

Lukas Brantner
(Oxford)
Abstract

Over the complex numbers, the Bomolgorov-Tian-Todorev theorem asserts that Calabi-Yau varieties have unobstructed deformations, so any n^{th} order deformation extends to higher order.  We prove an analogue of this statement for the nicest kind of Calabi-Yau varieties in characteristic p, namely ordinary ones, using derived algebraic geometry. In fact, we produce canonical lifts to characteristic zero, thereby generalising results of Serre-Tate, Deligne-Nygaard, Ward, and Achinger-Zdanowic. This is joint work with Taelman.

Thu, 17 Feb 2022
14:00
Virtual

K-Spectral Sets

Anne Greenbaum
(University of Washington)
Abstract

Let $A$ be an $n$ by $n$ matrix or a bounded linear operator on a complex Hilbert space $(H, \langle \cdot , \cdot \rangle , \| \cdot \|)$. A closed set $\Omega \subset \mathbb{C}$ is a $K$-spectral set for $A$ if the spectrum of $A$ is contained in $\Omega$ and if, for all rational functions $f$ bounded in $\Omega$, the following inequality holds:
\[\| f(A) \| \leq K \| f \|_{\Omega} ,\]
where $\| \cdot \|$ on the left denotes the norm in $H$ and $\| \cdot \|_{\Omega}$ on the right denotes the $\infty$-norm on $\Omega$. A simple way to obtain a $K$ value for a given set $\Omega$ is to use the Cauchy integral formula and replace the norm of the integral by the integral of the resolvent norm:
\[f(A) = \frac{1}{2 \pi i} \int_{\partial \Omega} ( \zeta I - A )^{-1}
f( \zeta )\,d \zeta \Rightarrow
\| f(A) \| \leq \frac{1}{2 \pi} \left( \int_{\partial \Omega}
\| ( \zeta I - A )^{-1} \|~| d \zeta | \right) \| f \|_{\Omega} .\]
Thus one can always take
\[K = \frac{1}{2 \pi} \int_{\partial \Omega} \| ( \zeta I - A )^{-1} \| | d \zeta | .\]
In M. Crouzeix and A. Greenbaum, Spectral sets: numerical range and beyond, SIAM J. Matrix Anal. Appl., 40 (2019), pp. 1087-1101, different bounds on $K$ were derived.  I will show how these compare to that from the Cauchy integral formula for a variety of applications.  In case $A$ is a matrix and $\Omega$ is simply connected, we can numerically compute what we believe to be the optimal value for $K$ (and, at least, is a lower bound on $K$).  I will show how these values compare with the proven bounds as well.

(joint with  Michel Crouzeix and Natalie Wellen)
 

---

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Subscribe to