14:15
Generalisations of the (Pin,osp(1|2)) Howe duality
Abstract
The classical Dirac operator is part of an osp(1|2) realisation inside the Weyl-Clifford algebra which is Pin-invariant. This leads to a multiplicity-free decomposition of the space of spinor-valued polynomials in irreducible modules for this Howe dual pair. In this talk we review an abstract generalisation A of the Weyl algebra that retains a realisation of osp(1|2) and we determine its centraliser algebra explicitly. For the special case where A is a rational Cherednik algebra, the centralizer algebra provides a refinement of the previous decomposition whose analogue was no longer irreducible in general. As an example, for the group S3 in specific, we will examine the finite-dimensional irreducible modules of the centraliser algebra.
The problem of optimisation – that is, finding the maximum or minimum of an ‘objective’ function – is one of the most important problems in computational mathematics. Optimisation problems are ubiquitous: traders might optimise their portfolio to maximise (expected) revenue, engineers may optimise the design of a product to maximise efficiency, data scientists minimise the prediction error of machine learning models, and scientists may want to estimate parameters using experimental data.
11:00
The Pigeonhole Geometry of Numbers and Sums of Squares
Abstract
Fermat’s two-squares theorem is an elementary theorem in number theory that readily lends itself to a classification of the positive integers representable as the sum of two squares. Given this, a natural question is: what is the minimal number of squares needed to represent any given (positive) integer? One proof of Fermat’s result depends on essentially a buffed pigeonhole principle in the form of Minkowski’s Convex Body Theorem, and this idea can be used in a nearly identical fashion to provide 4 as an upper bound to the aforementioned question (this is Lagrange’s four-square theorem). The question of identifying the integers representable as the sum of three squares turns out to be substantially harder, however leaning on a powerful theorem of Dirichlet and a handful of tricks we can use Minkowski’s CBT to settle this final piece as well (this is Legendre’s three-square theorem).
Divergence-free positive tensors and applications to gas dynamics (2/2)
Abstract
A lot of physical processes are modelled by conservation laws (mass, momentum, energy, charge, ...) Because of natural symmetries, these conservation laws express often that some symmetric tensor is divergence-free, in the space-time variables. We extract from this structure a non-trivial information, whenever the tensor takes positive semi-definite values. The qualitative part is called Compensated Integrability, while the quantitative part is a generalized Gagliardo inequality.
In the first part, we shall present the theoretical analysis. The proofs of various versions involve deep results from the optimal transportation theory. Then we shall deduce new fundamental estimates for gases (Euler system, Boltzmann equation, Vlaov-Poisson equation).
One of the theorems will have been used before, during the Monday seminar (PDE Seminar 4pm Monday 12 November).
All graduate students, post-docs faculty and visitors are welcome to come to the lectures. If you aren't a member of the CDT please email @email to confirm that you will be attending.
Divergence-free positive tensors and applications to gas dynamics (1/2)
Abstract
A lot of physical processes are modelled by conservation laws (mass, momentum, energy, charge, ...) Because of natural symmetries, these conservation laws express often that some symmetric tensor is divergence-free, in the space-time variables. We extract from this structure a non-trivial information, whenever the tensor takes positive semi-definite values. The qualitative part is called Compensated Integrability, while the quantitative part is a generalized Gagliardo inequality.
In the first part, we shall present the theoretical analysis. The proofs of various versions involve deep results from the optimal transportation theory. Then we shall deduce new fundamental estimates for gases (Euler system, Boltzmann equation, Vlaov-Poisson equation).
One of the theorems will have been used before, during the Monday seminar (PDE Seminar 4pm Monday 12 November)
All graduate students, post-docs faculty and visitors are welcome to come to the lectures. If you aren't a member of the CDT please email @email to confirm that you will be attending.
Diophantine approximation is about how well real numbers can be approximated by rationals. Say I give you a real number $\alpha$, and I ask you to approximate it by a rational number $a/q$, where $q$ is not too large. A naive strategy would be to first choose $q$ arbitrarily, and to then choose the nearest integer $a$ to $q \alpha$. This would give $| \alpha - a/q| \le 1/(2q)$, and $\pi \approx 3.14$.