Thu, 28 Nov 2019
16:00
L6

Propagating algebraicity of automorphic representations via functoriality

Wushi Goldring
(Stockholm University)
Abstract

My talk will have two protagonists: (1) Automorphic representations which -- let's be honest -- are very complicated and mysterious, but also (2) Involutions  (=automorphisms of order at most 2) of connected reductive groups -- these are very concrete and can often be represented by diagonal matrices with entries 1,-1 or i, -i. The goal is to explain how difficult questions about (1) can be reduced to relatively easy, concrete questions about (2).
Automorphic representations are representation-theoretic generalizations of modular forms. Like modular forms, automorphic representations are initially defined analytically. But unlike modular forms -- where we have a reinterpretation in terms of algebraic geometry -- for most automorphic representations we currently only have a (real) analytic definition. The Langlands Program predicts that a wide class of automorphic representations admit the same algebraic properties which have been known to hold for modular forms since the 1960's and 70's. In particular, certain complex numbers "Hecke eigenvalues" attached to these automorphic representations are conjectured to be algebraic numbers. This remains open in many cases (especially those cases of interest in number theory and algebraic geometry), in particular for Maass forms -- functions on the upper half-plane which are a non-holomorphic variant of modular forms.
I will explain how elementary structure theory of reductive groups over the complex numbers provides new insight into the above algebraicity conjectures; in particular we deduce that the Hecke eigenvalues are algebraic for an infinite class of examples where this was not previously known. 
After applying a bunch of "big, old theorems" (in particular Langlands' own archimedean correspondence), it all comes down to studying how involutions of a connected, reductive group vary under group homomorphisms. Here I will write down the key examples explicitly using matrices.

Thu, 21 Nov 2019
16:00
L6

The Weyl subconvex exponent for Dirichlet L-functions.

Ian Petrow
(UCL)
Abstract

In the 1920s Weyl proved the first non-trivial estimate for the Riemann zeta function on the critical line: \zeta(1/2+it) << (1+|t|)^{1/6+\epsilon}. The analogous bound for a Dirichlet L-function L(1/2,\chi) of conductor q as q tends to infinity is still unknown in full generality. In a breakthrough around 2000, Conrey and Iwaniec proved the analogue of the Weyl bound for L(1/2,\chi) when \chi is assumed to be quadratic of conductor q.  Building on the work of Conrey and Iwaniec, we show (joint work with Matt Young) that the Weyl bound for L(1/2,\chi) holds for all primitive Dirichlet characters \chi. The extension to all moduli q is based on aLindelöf-on-average upper bound for the fourth moment of Dirichlet L-functions of conductor q along a coset of the subgroup of characters modulo d when q^*|d, where q^* is the least positive integer such that q^2|(q^*)^3.

Thu, 14 Nov 2019
16:00
L6

Propinquity of divisors

Ben Green
(Oxford)
Abstract

Let n be a random integer (sampled from {1,..,X} for some large X). It is a classical fact that, typically, n will have around (log n)^{log 2} divisors. Must some of these be close together? Hooley's Delta function Delta(n) is the maximum, over all dyadic intervals I = [t,2t], of the number of divisors of n in I. I will report on joint work with Kevin Ford and Dimitris Koukoulopoulos where we conjecture that typically Delta(n) is about (log log n)^c for some c = 0.353.... given by an equation involving an exotic recurrence relation, and then prove (in some sense) half of this conjecture, establishing that Delta(n) is at least this big almost surely.

Thu, 07 Nov 2019
16:00
L6

Number fields with prescribed norms

Rachel Newton
(Reading)
Abstract

Let G be a finite abelian group, let k be a number field, and let x be an element of k. We count Galois extensions K/k with Galois group G such that x is a norm from K/k. In particular, we show that such extensions always exist. This is joint work with Christopher Frei and Daniel Loughran.

Thu, 31 Oct 2019
16:00
L6

Mordell-Weil groups as Galois modules

Christian Wuthrich
(Nottingham)
Abstract

Let $E/k$ be an elliptic curve over a number field and $K/k$ a Galois extension with group $G$. What can we say about $E(K)$ as a Galois module? Not just what complex representations appear, but its structure as a $\mathbb{Z}[G]$-module. We will look at some examples with small $G$.

Thu, 24 Oct 2019

16:00 - 17:00
L6

L-functions of Kloosterman sums

Javier Fresán
(Ecole Polytechnique)
Abstract

Guided by the analogy with certain moments of the Bessel function that appear as Feynman integrals, Broadhurst and Roberts recently studied a family of L-functions built up by assembling symmetric power moments of Kloosterman sums over finite fields. I will prove that these L-functions arise from potentially automorphic motives over the field of rational numbers, and hence admit a meromorphic continuation to the complex plane that satisfies the expected functional equation. If time permits, I will identify the periods of the corresponding motives with the Bessel moments and make a few comments about the special values of the L-functions. This is a joint work with Claude Sabbah and Jeng-Daw Yu.

Fri, 25 Oct 2019

14:00 - 15:00
L6

Instability of sheared density interfaces

Tom Eaves
(University of British Columbia)
Abstract

Of the canonical stratified shear flow instabilities (Kelvin–Helmholtz, Holmboe-wave and Taylor–Caulfield), the Taylor–Caulfield instability (TCI) has received relatively little attention, and forms the focus of the presentation. A diagnostic of the linear instability dynamics is developed that exploits the net pseudomomentum to distinguish TCI from the other two instabilities for any given flow profile. Next, the nonlinear dynamics of TCI is shown across its range of unstable horizontal wavenumbers and bulk Richardson numbers. At small bulk Richardson numbers, a cascade of billow structures of sequentially smaller size may form. For large bulk Richardson numbers, the primary nonlinear travelling waves formed by the linear instability break down via a small-scale, Kelvin– Helmholtz-like roll-up mechanism with an associated large amount of mixing. In all cases, secondary parasitic nonlinear Holmboe waves appear at late times for high Prandtl number. Finally, a nonlinear diagnostic is proposed to distinguish between the saturated states of the three canonical instabilities based on their distinctive density–streamfunction and generalised vorticity–streamfunction relations.

Mon, 11 Nov 2019
15:45
L6

The Witt vectors with coefficients

Emanuele Dotto
(University of Warwick)
Abstract

We will introduce the Witt vectors of a ring with coefficients in a bimodule and use them to calculate the components of the Hill-Hopkins-Ravenel norm for cyclic p-groups. This algebraic construction generalizes Hesselholt's Witt vectors for non-commutative rings and Kaledin's polynomial Witt vectors over perfect fields. We will discuss applications to the characteristic polynomial over non-commutative rings and to the Dieudonné determinant. This is all joint work with Krause, Nikolaus and Patchkoria.

Thu, 17 Oct 2019
16:00
L6

One-level density of Dirichlet L-functions

Kyle Pratt
(Oxford)
Abstract

I will discuss work in progress with Sary Drappeau and Maksym Radziwill on low-lying zeros of Dirichlet L-functions. By way of motivation I will discuss some results on the spacings of zeros of the Riemann zeta function, and the conjectures of Katz and Sarnak relating the distribution of low-lying zeros of L-functions to eigenvalues of random matrices. I will then describe some ideas behind the proof of our theorem.
 

Subscribe to