Tue, 16 May 2017

12:00 - 13:00
L4

Emergent Locality and Causal States

Sebatian Fischetti
(Imperial College London)
Abstract

 Locality is not expected to be a fundamental aspect of a full theory of quantum gravity; it should be emergent in an appropriate semiclassical limit.  In the context of general holography, I'll define a new construct - the causal state - which provides a necessary and sufficient condition for a boundary state to have a holographic semiclassical dual causal geometry (and thus be "local").  This definition illuminates some general features of holographic quantum gravity: for instance, I'll show that the emergence of locality is "all or nothing" in the sense that it exhibits features of quantum error correction and quantum secret sharing.  In the special case of AdS/CFT, I'll also argue that the causal state is the natural boundary dual to the so-called causal wedge of a region. 

Oxford Mathematician Philip Maini has been elected to the Academy of Medical Sciences for 2017. The Academy's mission is to advance biomedical and health research and its translation into benefits for society and this year's elected Fellows, 46 in total, have expertise that spans women’s health, immunology, public health and infectious disease among many other fields.

Wed, 17 May 2017

11:30 - 12:30
N3.12

Nearly exponential functions of order 4

David Hume
(University of Oxford)
Abstract

For every $\epsilon>0$ does there exist some $n\in\mathbb{N}$ and a bijection $f:\mathbb{Z}_n\to\mathbb{Z}_n$ such that $f(x+1)=2f(x)$ for at least $(1-\epsilon)n$ elements of $\mathbb{Z}_n$ and $f(f(f(f(x))))=(x)$ for all $x\in\mathbb{Z}_n$? I will discuss this question and its relation to an important open problem in the theory of countable discrete groups.

Tue, 16 May 2017

12:45 - 13:30
C5

Pattern Formation in Non-Local Systems with Cross-Diffusion

Markus Schmidtchen
(Imperial College London)
Abstract

Multi-agent systems in nature oftentimes exhibit emergent behaviour, i.e. the formation of patterns in the absence of a leader or external stimuli such as light or food sources. We present a non-local two species crossinteraction model with cross-diffusion and explore its long-time behaviour. We observe a rich zoology of behaviours exhibiting phenomena such as mixing and/or segregation of both species and the formation of travelling pulses.

PINGU: a vision for neutrino and particle physics at the South Pole
Aartsen, M Abraham, K Ackermann, M Sarkar, S Et al., E volume 44 issue 5 (07 Apr 2017)
Tue, 13 Jun 2017
14:30
L6

On the number of distinct vertex sets covered by cycles

Jaehoon Kim
(Birmingham)
Abstract

Komlós conjectured in 1981 that among all graphs with minimum degree at least $d$, the complete graph $K_{d+1}$ minimises the number of Hamiltonian subsets, where a subset of vertices is Hamiltonian if it contains a spanning cycle. We prove this conjecture when $d$ is sufficiently large.  In fact we prove a stronger result: for large $d$, any graph $G$ with average degree at least $d$ contains almost twice as many Hamiltonian subsets as $K_{d+1}$, unless $G$ is isomorphic to $K_{d+1}$ or a certain other graph which we specify. This is joint work with Hong Liu, Maryam Sharifzadeh and Katherine Staden.

Subscribe to