Puzzling things happen in human perception when ambiguous or incomplete information is presented to the eyes. For example, illusions, or multistable figures occur when a single image can be perceived in several ways. 

In the Oxford Mathematics Christmas Public Lecture Ian Stewart demonstrates how these phenomena provide clues about the workings of the visual system, with reference to recent research which has modelled simplified, systematic methods by which the brain can make decisions.

Mon, 22 May 2017

16:00 - 17:00
L4

Global symmetry-breaking bifurcation in a model for 2-phase lipid-bilayer vesicles - analysis and computation

Tim Healey
(Cornell University)
Abstract

We study a model for lipid-bilayer membrane vesicles exhibiting phase separation, incorporating a phase field together with membrane fluidity and bending elasticity. We prove the existence of a plethora of equilibria in the large, corresponding to symmetry-breaking solutions of the Euler-Lagrange equations. We also numerically compute a special class of such solutions, namely those possessing icosahedral symmetry. We overcome several difficulties along the way. Due to inherent surface fluidity combined with finite curvature elasticity, neither the Eulerian (spatial) nor the Lagrangian (material) description of the model lends itself well to analysis. This is resolved via a singularity-free radial-map description, which effectively eliminates the grossly under-determined mid-plane deformation. We then use well known group-theoretic selection techniques combined with global bifurcation methods to obtain our results.

Mon, 15 May 2017

16:00 - 17:00
L4

Weak-Strong Uniqueness in Fluid Dynamic

Emil Wiedemann
(Leibniz Universität Hannover)
Abstract

Various concepts of weak solution have been suggested for the fundamental equations of fluid dynamics over the last few decades. However, such weak solutions may be non-unique, or at least their uniqueness is unknown. Nevertheless, a conditional notion of uniqueness, the so-called weak-strong uniqueness, can be established in various situations. We present some recent results, both positive and negative, on weak-strong uniqueness in the realm of incompressible and compressible fluid dynamics. Applications to the convergence of numerical schemes will be indicated.

Mon, 01 May 2017

16:00 - 17:00
L4

Scalable bifurcation analysis of nonlinear partial differential equations and variational inequalities

Patrick Farrell
(Oxford)
Abstract

Computing the solutions u of an equation f(u,λ)=0 as the parameter λ is varied is a central task in applied mathematics and engineering. In this talk I will present a new algorithm, deflated continuation, for this task.

Deflated continuation has three main advantages. First, it is capable of computing disconnected bifurcation diagrams; previous algorithms only aimed to compute that part of the bifurcation diagram continuously connected to the initial data. Second, its implementation is extremely simple: it only requires a minor modification to any existing Newton-based solver. Third, it can scale to very large discretisations if a good preconditioner is available.

Among other problems, we will apply this to a famous singularly perturbed ODE, Carrier's problem. The computations reveal a striking and beautiful bifurcation diagram, with an infinite sequence of alternating pitchfork and fold bifurcations as the singular perturbation parameter tends to zero. The analysis yields a novel and complete taxonomy of the solutions to the problem, and demonstrates that a claim of Bender & Orszag (1999) is incorrect. We will also use the algorithm to calculate distinct local minimisers of a topology optimisation problem via the combination of deflated continuation and a semismooth Newton method.

Mon, 24 Apr 2017

16:00 - 17:00
L4

The hunting of the twisted hedgehog

Epifanio Virga
(University of Pavia)
Abstract

In the mathematical theory of liquid crystals, a hedgehog is a universal equilibrium solution for Frank's elastic free-energy functional. It is characterized by a radial defect for the nematic director, reminiscent of the way spines are arranged in the spiny mammal. For certain choices of Frank's elastic constants, the free energy stored in a ball subject to radial boundary conditions for the director is minimized by a hedgehog with its defect in the centre of the ball. For other choices of Frank's constants, it is known that a radial hedgehog cannot be a minimizer for this variational problem. We shall gather evidence supporting the conjecture that a "twisted" hedgehog takes the place of a radial hedgehog as an energy minimizer (and we shall not fail to say in which sense it is "twisted"). We shall also show that a twisted hedgehog often accompanies, unseen, a radial hedgehog, as its virtual double, ready to beat its energy as a certain elastic anisotropy is reached.

Tue, 31 Jan 2017
14:00
L5

Interpolation and quadrature in perturbed points

Nick Trefethen
(Mathematical Institute)
Abstract

The trigonometric interpolants to a periodic function in equispaced points converge if is Dini-continuous, and the associated quadrature formula, the trapezoidal rule, converges if is continuous.  What if the points are perturbed?  Amazingly little has been done on this problem, or on its algebraic (i.e. nonperiodic) analogue.  I will present new results joint with Anthony Austin which show some surprises.

 

Tue, 02 May 2017
14:15
L4

Representations of p-adic groups via geometric invariant theory

Beth Romano
(Cambridge University)
Abstract

Let G be a split reductive group over a finite extension k of Q_p. Reeder and Yu have given a new construction of supercuspidal representations of G(k) using geometric invariant theory. Their construction is uniform for all p but requires as input stable vectors in certain representations coming from Moy-Prasad filtrations. In joint work, Jessica Fintzen and I have classified the representations of this kind which contain stable vectors; as a corollary, the construction of Reeder-Yu gives new representations when p is small. In my talk, I will give an overview of this work, as well as explicit examples for the case when G = G_2. For these examples, I will explicitly describe the locus of all stable vectors, as well as the Langlands parameters which correspond under the local Langlands correspondence to the representations of G(k). 

Subscribe to