Thu, 12 May 2016

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

Estimating the Largest Elements of a Matrix

Dr Sam Relton
(Manchester University)
Abstract


In many applications we need to find or estimate the $p \ge 1$ largest elements of a matrix, along with their locations. This is required for recommender systems used by Amazon and Netflix, link prediction in graphs, and in finding the most important links in a complex network, for example. 

Our algorithm uses only matrix vector products and is based upon a power method for mixed subordinate norms. We have obtained theoretical results on the convergence of this algorithm via a comparison with rook pivoting for the LU  decomposition. We have also improved the practicality of the algorithm by producing a blocked version iterating on $n \times t$ matrices, as opposed to vectors, where $t$ is a tunable parameter. For $p > 1$ we show how deflation can be used to improve the convergence of the algorithm. 

Finally, numerical experiments on both randomly generated matrices and real-life datasets (the latter for $A^TA$ and $e^A$) show how our algorithms can reliably estimate the largest elements of a matrix whilst obtaining considerable speedups when compared to forming the matrix explicitly: over 1000x in some cases.

Fri, 10 Jun 2016

16:00 - 17:00
L1

Owning a successful DPhil

Abstract
Wondering about how to organise your DPhil? How to make the most of your supervision meetings?

In this session we will explore these and other questions related to what makes a successful DPhil with help from faculty members, postdocs and DPhil students.

In the first half of the session Helen Byrne and Roger Heath-Brown will give short talks on their experiences as PhD students and supervisors. 

The second part of the session will be a panel discussion, and the panel will consist of Emily Cliff, Benjamin Green, Paul Taylor and Andrew Thompson. Senior faculty members will be kindly asked to leave the lecture theatre - to ensure that students feel comfortable with discussing their experiences with later year students and postdocs/research fellows without any senior faculty present.
 
At 5pm senior and junior faculty members, postdocs and students will reunite in the common room for the happy hour.

About the speakers and panel members:
Helen Byrne received her DPhil from Oxford under the supervision of John Norbury. She was a Professor of Applied Mathematics in Nottingham from 2003 to 2011, when she moved to Oxford where she is a Professor in Mathematical Biology.
Professor Helen Byrne
 
Roger Heath-Brown received his PhD from Cambridge under the supervision of Alan Baker. He moved to Oxford in 1979, where he has been a Professor of Pure Mathematics since 1999.
Roger Heath-Brown
 
Emily Cliff received her DPhil from Oxford in 2015 under the supervision of Kobi Kremnitzer, and she is now a postdoc in the Geometry and Representation Theory group.
No image
 
Benjamin Green and Paul Taylor are both fourth year DPhil students; Benjamin Green is a member of the Number Theory group,
No image
while Paul Taylor is in the Mathematical Biology group.
No image
 
Andrew Thompson received his PhD from the University of Edinburgh in 2012 under the supervision of Coralia Cartis and Jared Tanner, and he has been a Lecturer in Computational Mathematics at Oxford since 2014.
No image
 
Fri, 29 Apr 2016

16:00 - 17:00
L1

InFoMM CDT Annual Lecture

Professor Chris Budd
(University of Bath)
Abstract

Some models for climate change, the good the bad and the ugly

Modelling climate presents huge challenges for mathematicians and scientists, and has a large effect on policy makers.  Climate models themselves vary from simple to complex with a huge range in between.  But how good and/or reliable are they?

In this talk I will describe some of the various mathematical models of climate that are both used to understand past climate and also to predict future climate.  I will also try to show that an understanding of non-smooth effects in dynamical systems can give us useful insights into the behaviour and analysis of these models.

Fri, 13 May 2016

16:00 - 17:00
L1

Speaking and listening

Professor Philip Maini
(Mathematical Institute, Oxford)
Abstract

What is the point of giving a talk?  What is the point of going to a talk?  In this presentation, which is intended to have a lot of audience participation, I would like to explore how one should prepare talks for different audiences and different occasions, and what one should try to get out of going to a talk.

If effectively harnessed, increased uptake of renewable generation, and the electrification of heating and transport, will form the bedrock of a low carbon future. Unfortunately, these technologies may have undesirable consequences for the electricity networks supplying our homes and businesses. The possible plethora of low carbon technologies, like electric vehicles, heat pumps and photovoltaics, will lead to increased pressure on the local electricity networks from larger and less predictable demands.

Fri, 22 Apr 2016

16:00 - 17:00
L1

Journals and metrics

Professor Sir John Ball
(Mathematical Institute, Oxford)
Abstract

What is the purpose of journals?  How should you choose what journal to submit a paper to?  Should it be open access?  And how would you like your work to be evaluated?

Fri, 20 May 2016

16:00 - 17:00
L1

North meets South Colloquium

Sira Gratz + Hao Ni
(Mathematical Institute, Oxford)
Abstract

Cluster algebras: from finite to infinite -- Sira Gratz

No image

Abstract: Cluster algebras were introduced by Fomin and Zelevinsky at the beginning of this millennium.  Despite their relatively young age, strong connections to various fields of mathematics - pure and applied - have been established; they show up in topics as diverse as the representation theory of algebras, Teichmüller theory, Poisson geometry, string theory, and partial differential equations describing shallow water waves.  In this talk, following a short introduction to cluster algebras, we will explore their generalisation to infinite rank.

Modelling the effects of data streams using rough paths theory -- Hao Ni

Abstract: In this talk, we bring the theory of rough paths to the study of non-parametric statistics on streamed data and particularly to the problem of regression where the input variable is a stream of information, and the dependent response is also (potentially) a path or a stream.  We explain how a certain graded feature set of a stream, known in the rough path literature as the signature of the path, has a universality that allows one to characterise the functional relationship summarising the conditional distribution of the dependent response. At the same time this feature set allows explicit computational approaches through linear regression.  We give several examples to show how this low dimensional statistic can be effective to predict the effects of a data stream.

Fri, 06 May 2016

16:00 - 17:00
L1

North meets South Colloquium

Bruce Bartlett + Giacomo Canevari
(Mathematical Institute, Oxford)
Abstract

From the finite Fourier transform to topological quantum field theory -- Bruce Bartlett

No image

Abstract: In 1979, Auslander and Tolimieri wrote the influential "Is computing with the finite Fourier transform pure or applied mathematics?".  It was a homage to the indivisibility of our two subjects, by demonstrating the interwoven nature of the finite Fourier transform, Gauss sums, and the finite Heisenberg group.  My talk is intended as a new chapter in this story. I will explain how all these topics come together yet again in 3-dimensional topological quantum field theory, namely Chern-Simons theory with gauge group U(1).

Defects in liquid crystals: mathematical approaches -- Giacomo Canevari

No image

Abstract: Liquid crystals are matter in an intermediate state between liquids and crystalline solids.  They are composed by molecules which can flow, but retain some form of ordering.  For instance, in the so-called nematic phase the molecules tend to align along some locally preferred directions.  However, the ordering is not perfect, and defects are commonly observed.

The mathematical theory of defects in liquid crystals combines tools from different fields, ranging from topology - which provides a convenient language to describe the main properties of defects -to calculus of variations and partial differential equations.  I will compare a few mathematical approaches to defects in nematic liquid crystals, and discuss how they relate to each other via asymptotic analysis.

Mon, 06 Jun 2016

15:45 - 16:45
L6

Hausdorff dimension and complexity of Kleinian groups

​​​Yong Hou
(IAS Princeton)
Abstract

In this talk I'll give a general presentation of my recent work that a purely loxodromic Kleinian group of Hausdorff dimension<1 is a classical Schottky group. This gives a complete classification of all Kleinian groups of dimension<1. The proof uses my earlier result on the classification of Kleinian groups of sufficiently small Hausdorff dimension. This result in conjunction to another work (joint with Anderson) provides a resolution to Bers uniformization conjecture. No prior knowledge on the subject is assumed.

Subscribe to