The Society for Industrial and Applied Mathematics (SIAM) has announced that Professors Xunyu Zhou and Endre Suli from Oxford Mathematics are among its newly elected Fellows for 2016.
SIAM exists to ensure the strongest interactions between mathematics and other scientific and technological communities through membership activities, publication of journals and books, and conferences.
14:15
The Missing Meteorites of Antarctica
Abstract
The vast majority of the World's documented meteorite specimens have been collected from Antarctica. This is due to Antarctica’s ice dynamics, which allows for the significant concentration of meteorites onto ice surfaces known as Meteorite Stranding Zones. However, meteorite collection data shows a significant anomaly exists: the proportion of iron-based meteorites are under-represented compared to those found in the rest of the World. Here I explain that englacial solar warming provides a plausible explanation for this shortfall: as meteorites are transported up towards the surface of the ice they become exposed to increasing amounts of solar radiation, meaning it is possible for meteorites with a high-enough thermal conductivity (such as iron) to reach a depth at which they melt their underlying ice and sink back downwards, offsetting the upwards transportation. An enticing consequence of this mechanism is that a sparse layer of meteorites lies just beneath the surface of these Meteorite Stranding Zones...
14:15
The Weak Constraint Formulation of Bayesian Inverse Problems
Abstract
Inverse problems arise in many applications. One could solve them by adopting a Bayesian framework, to account for uncertainty which arises from our observations. The solution of an inverse problem is given by a probability distribution. Usually, efficient methods at hand to extract information from this probability distribution involves the solution of an optimization problem, where the objective function is highly nonconvex. In this talk, we explore a reformulation of inverse problems, which helps in convexifying the objective function. We also discuss a method to sample from this probability distribution.
14:15
Effective boundary conditions (EBC) for semi-open dispersive systems: Leaky rigid lid on the atmosphere
Abstract
Much of our understanding of the tropospheric dynamics relies on the concept of discrete internal modes. However, discrete modes are the signature of a finite system, while the atmosphere should be modeled as infinite and "is characterized by a single isolated eigenmode and a continuous spectrum" (Lindzen, JAS 2003). Is it then unphysical to use discrete modes? To resolve this issue we obtain an approximate radiation condition at the tropopause --- this yields an EBC. We then use this EBC to compute a new set of vertical modes: the leaky rigid lid modes. These modes decay, with decay time-scales for the first few modes ranging from an hour to a week. This suggests that the rate of energy loss through upwards propagating waves may be an important factor in setting the time scale for some atmospheric phenomena. The modes are not orthogonal, but they are complete, with a simple way to project initial conditions onto them.
The EBC formulation requires an extension of the dispersive wave theory. There it is shown that sinusoidal waves carry energy with the group speed c_g = d omega / dk, where both the frequency omega and wavenumber k are real. However, when there are losses, complex k's and omega's arise, and a more general theory is required. I will briefly comment on this theory, and on how the Laplace Transform can be used to implement generic EBC.
14:15
Mechanical error estimators for ice flow models and the trajectory of erratic boulders
Abstract
In this talk, I will present two different aspects of the ice flow modelling, including a theoretical part and an applied part. In the theoretical part, I will derive some "mechanical error estimators'', i.e. estimators that can measure the mechanical error between the most accurate ice flow model (Glen-Stokes) and some approximations based on shallowness assumption. To do so, I will follow residual techniques used to obtain a posteriori estimators of the numerical error in finite element methods for non-linear elliptic problems. In the applied part, I will present some simulations of the ice flow generated by the Rhone Glacier, Switzerland, during the last glacial maximum (~ 22 000 years ago), analyse the trajectories taken by erratic boulders of different origins, and compare these results to geomorphological observations. In particular, I will show that erratic boulders, whose origin is known, constitute valuable data to infer information about paleo-climate, which is the most uncertain input of any paleo ice sheet model.
Square Functions and the Muckenhoupt Weight Classes of Elliptic Measures
Abstract
We give a new characterization of the property that the elliptic measure
belongs to the infinity weight Muckenhoupt class
in terms of a Carleson measure property of bounded solutions.
This is joint work with C.Kenig, J.Pipher and T.Toro
12:00
Ancient solutions of Geometric Flows
Abstract
In this talk we will discuss Uniqueness Theorems for ancient solutions to geometric partial differential equations such as the Mean curvature flow, the Ricci flow and the Yamabe flow. We will also discuss the construction of new ancient solutions from the parabolic gluing of one or more solitons.
12:00
Minimal hypersurfaces with bounded index
Abstract
12:00