Non-nilpotent graphs of groups
Abstract
A non-nilpotent graph Γ(G) of a finite group G has elements of G as vertices, with x and y joined by an edge iff a subgroup generated by these two elements is non-nilpotent. During the talk we will prove several (often unrelated) properties of this construction; for instance, any simple graph can be found as an induced subgraph of Γ(G) for some (solvable) group G. The talk is based on my article "A few remarks on the theory of non-nilpotent graphs" (May 2023).