Tue, 25 Feb 2025
16:00
C3

Equivariant higher Dixmier-Douady theory for UHF-algebras

Valerio Bianchi
(Cardiff University)
Abstract

A classical result of Dixmier and Douady enables us to classify locally trivial bundles of C*-algebras with compact operators as fibres via methods in homotopy theory. Dadarlat and Pennig have shown that this generalises to the much larger family of bundles of stabilised strongly self-absorbing C*-algebras, which are classified by the first group of the cohomology theory associated to the units of complex topological K-theory. Building on work of Evans and Pennig I consider Z/pZ-equivariant C*-algebra bundles over Z/pZ-spaces. The fibres of these bundles are infinite tensor products of the endomorphism algebra of a Z/pZ-representation. In joint work with Pennig, we show that the theory refines completely to this equivariant setting. In particular, we prove a full classification of the C*-algebra bundles via equivariant stable homotopy theory.

North meets South is an Mathematical Institute tradition founded by and for early-career researchers. One speaker from the North side of the Andrew Wiles Building and one speaker from the South side will each present an idea from their work in an accessible yet intriguing way. 

Today, 4pm, L1

North Paul-Hermann Balduf - Statistics of Feynman integral

Thu, 06 Feb 2025

14:00 - 15:00
Lecture Room 3

Deflation Techniques for Finding Multiple Local Minima of a Nonlinear Least Squares Problem

Marcus Webb
(University of Manchester)
Abstract

Deflation is a technique to remove a solution to a problem so that other solutions to this problem can subsequently be found. The most prominent instance is deflation we see in eigenvalue solvers, but recent interest has been in deflation of rootfinding problems from nonlinear PDEs with many isolated solutions (spearheaded by Farrell and collaborators). 

 

In this talk I’ll show you recent results on deflation techniques for optimisation algorithms with many local minima, focusing on the Gauss—Newton algorithm for nonlinear least squares problems.  I will demonstrate advantages of these techniques instead of the more obvious approach of applying deflated Newton’s method to the first order optimality conditions and present some proofs that these algorithms will avoid the deflated solutions. Along the way we will see an interesting generalisation of Woodbury’s formula to least squares problems, something that should be more well known in Numerical Linear Algebra (joint work with Güttel, Nakatsukasa and Bloor Riley).

 

Main preprint: https://arxiv.org/abs/2409.14438

WoodburyLS preprint: https://arxiv.org/abs/2406.15120

Wed, 06 Nov 2024
16:00
L6

Presentations of Bordism Categories

Filippos Sytilidis
(University of Oxford)
Abstract

A topological quantum field theory (TQFT) is a functor from a category of bordisms to a category of vector spaces. Classifying low-dimensional TQFTs often involves considering presentations of bordism categories in terms of generators and relations. In this talk, we will introduce these concepts and outline a program for obtaining such presentations using Morse–Cerf theory.

Kazhdan constants for Chevalley groups over the integers
Kaluba, M Kielak, D Revista Matemática Iberoamericana (14 Nov 2024)

Hello all, we are the Mirzakhani Society, a group for all the women and non-binary mathematicians at Oxford. We run lots and lots of relaxed events from pizza nights to career conferences. Our main aim is to create a warm and welcoming environment for women* to come together and chat about life, maths and anything in-between. 

 

TE-PAI: exact time evolution by sampling random circuits
Kiumi, C Koczor, B (22 Oct 2024)
Subscribe to