Tue, 15 Oct 2024
16:00
L6

The third moment of the logarithm of the Riemann zeta function

Maxim Gerspach
(KTH Royal Institute of Technology)
Abstract

I will present joint work with Alessandro Fazzari in which we prove precise conditional estimates for the third (non-absolute) moment of the logarithm of the Riemann zeta function, beyond the Selberg central limit theorem, both for the real and imaginary part. These estimates match predictions made in work of Keating and Snaith. We require the Riemann Hypothesis, a conjecture for the triple correlation of Riemann zeros and another ``twisted'' pair correlation conjecture which captures the interaction of a prime power with Montgomery's pair correlation function. This conjecture can be proved on a certain subrange unconditionally, and on a larger range under the assumption of a variant of the Hardy-Littlewood conjecture with good uniformity.

Fri, 06 Sep 2024

17:00 - 18:00
L4

Matroids with coefficients and Lorentzian polynomials

Matt Baker
(Georgia Institute of Technology)
Abstract

In the first half of the talk, I will briefly survey the theory of matroids with coefficients, which was introduced by Andreas Dress and Walter Wenzel in the 1980s and refined by the speaker and Nathan Bowler in 2016. This theory provides a unification of vector subspaces, matroids, valuated matroids, and oriented matroids. Then, in the second half, I will outline an intriguing connection between Lorentzian polynomials, as defined by Petter Brändén and June Huh, and matroids with coefficients.  The second part of the talk represents joint work with June Huh, Mario Kummer, and Oliver Lorscheid.

The triangulation complexity of fibred 3–manifolds
Lackenby, M Purcell, J Geometry & Topology volume 28 issue 4 1727-1828 (18 Jul 2024)
Approximation of an Inverse of the Incomplete Beta Function
Giles, M Beentjes, C Mathematical Software – ICMS 2024 volume 14749 (17 Jul 2024)
A set of guidelines for expected professional behaviour at the Mathematical Institute.
The Mathematics of Shock Reflection-Diffraction and von Neumann’s Conjectures Chen, G Feldman, M (01 Jan 2018)
Thu, 23 Jan 2025

14:00 - 15:00
Lecture Room 3

Multi-Index Monte Carlo Method for Semilinear Stochastic Partial Differential Equations

Abdul Lateef Haji-Ali
(Heriot Watt)
Abstract

We present an exponential-integrator-based multi-index Monte Carlo (MIMC) method for the weak approximation of mild solutions to semilinear stochastic partial differential equations (SPDEs). Theoretical results on multi-index coupled solutions of the SPDE are provided, demonstrating their stability and the satisfaction of multiplicative error estimates. Leveraging this theory, we develop a tractable MIMC algorithm. Numerical experiments illustrate that MIMC outperforms alternative approaches, such as multilevel Monte Carlo, particularly in low-regularity settings.

A first passage model of intravitreal drug delivery and residence time - influence of ocular geometry, individual variability, and injection location
Lamirande, P Gaffney, E Gertz, M Maini, P Crawshaw, J Caruso, A Investigative Ophthalmology and Visual Science
Thu, 07 Nov 2024

14:00 - 15:00
Lecture Room 3

Multilevel Monte Carlo methods

Mike Giles
(Oxford University)
Abstract

In this seminar I will begin by giving an overview of some problems in stochastic simulation and uncertainty quantification. I will then outline the Multilevel Monte Carlo for situations in which accurate simulations are very costly, but it is possible to perform much cheaper, less accurate simulations.  Inspired by the multigrid method, it is possible to use a combination of these to achieve the desired overall accuracy at a much lower cost.

Subscribe to