16:00
16:00
Computing complex resonances with AAA
Abstract
A beautiful example of a nonlinear eigenvalue problem is the determination of complex eigenvalues for wave scattering. This talk will show how nicely this can be done by applying AAA rational approximation to a scalarized resolvent sampled at a few real frequencies. Even for a domain as elementary as a circle with a gap in it, such computations do not seem to have been done before. This is joint work with Oscar Bruno and Manuel Santana at Caltech.
High-order finite element methods for multicomponent convection-diffusion
Abstract
Multicomponent fluids are mixtures of distinct chemical species (i.e. components) that interact through complex physical processes such as cross-diffusion and chemical reactions. Additional physical phenomena often must be accounted for when modelling these fluids; examples include momentum transport, thermality and (for charged species) electrical effects. Despite the ubiquity of chemical mixtures in nature and engineering, multicomponent fluids have received almost no attention from the finite element community, with many important applications remaining out of reach from numerical methods currently available in the literature. This is in spite of the fact that, in engineering applications, these fluids often reside in complicated spatial regions -- a situation where finite elements are extremely useful! In this talk, we present a novel class of high-order finite element methods for simulating cross-diffusion and momentum transport (i.e. convection) in multicomponent fluids. Our model can also incorporate local electroneutrality when the species carry electrical charge, making the numerical methods particularly desirable for simulating liquid electrolytes in electrochemical applications. We discuss challenges that arise when discretising the partial differential equations of multicomponent flow, as well as some salient theoretical properties of our numerical schemes. Finally, we present numerical simulations involving (i) the microfluidic non-ideal mixing of hydrocarbons and (ii) the transient evolution of a lithium-ion battery electrolyte in a Hull cell electrode.
From Physics-Informed Machine Learning to Physics-Informed Machine Intelligence: Quo Vadimus?
The Charles Pitts Robinson and John Palmer Barstow Professor of Applied Mathematics, Brown University;
Also @MIT & Pacific Northwest National Laboratory
https://sites.brown.edu/crunch-group/
George Karniadakis is from Crete. He is an elected member of the National Academy of Engineering, member of the American Academy of Arts and Sciences, and a Vannevar Bush Faculty Fellow. He received his S.M. and Ph.D. from Massachusetts Institute of Technology (1984/87). He was appointed Lecturer in the Department of Mechanical Engineering at MIT and subsequently he joined the Center for Turbulence Research at Stanford / Nasa Ames.
He joined Princeton University as Assistant Professor in the Department of Mechanical and Aerospace Engineering and as Associate Faculty in the Program of Applied and Computational Mathematics. He was a Visiting Professor at Caltech in 1993 in the Aeronautics Department and joined Brown University as Associate Professor of Applied Mathematics in the Center for Fluid Mechanics in 1994. After becoming a full professor in 1996, he continued to be a Visiting Professor and Senior Lecturer of Ocean/Mechanical Engineering at MIT. He is an AAAS Fellow (2018-), Fellow of the Society for Industrial and Applied Mathematics (SIAM, 2010-), Fellow of the American Physical Society (APS, 2004-), Fellow of the American Society of Mechanical Engineers (ASME, 2003-) and Associate Fellow of the American Institute of Aeronautics and Astronautics (AIAA, 2006-). He received the SES GI Taylor Medal (2024), the SIAM/ACM Prize on Computational Science & Engineering (2021), the Alexander von Humboldt award in 2017, the SIAM Ralf E Kleinman award (2015), the J. Tinsley Oden Medal (2013), and the CFD award (2007) by the US Association in Computational Mechanics. His h-index is 150 and he has been cited over 130,000 times.
Abstract
We will review physics-informed neural networks (NNs) and summarize available extensions for applications in computational science and engineering. We will also introduce new NNs that learn functionals and nonlinear operators from functions and corresponding responses for system identification.
These two key developments have formed the backbone of scientific machine learning that has disrupted the path of computational science and engineering and has created new opportunities for all scientific domains. We will discuss some of these opportunities in digital twins, autonomy, materials discovery, etc.
Moreover, we will discuss bio-inspired solutions, e.g., spiking neural networks and neuromorphic computing.