Tue, 21 Jan 2025
16:00
C3

Quantum symmetries on Kirchberg algebras

Kan Kitamura
(Riken iThems)
Abstract

In subfactor theory, it has been observed that operator algebras often admit symmetries beyond mere groups, sometimes called quantum symmetries. Besides recent substantial progress on the classification programs of simple amenable C*-algebras and group actions on them, there has been increasing interest in their quantum symmetries. This talk is devoted to an attempt to ensure the existence of various quantum symmetries on simple amenable C*-algebras, at least in the purely infinite case, by providing a systematic way to produce them. As a technical ingredient, a simplicity criterion for certain Pimsner algebras is given.

Wed, 27 Nov 2024
16:00
L6

Floer Homology and Square Peg Problem

Soheil Azarpendar
(University of Oxford)
Abstract

In 1911, Otto Toeplitz posed the intriguing "Square Peg Problem," asking whether every Jordan curve admits an inscribed square. Despite over a century of study, the problem remains unsolved in its full generality. However, significant progress has been made over the years. In this talk, we explore recent advancements by Andrew Lobb and Joshua Greene, who approach the problem through the lens of Lagrangian Floer homology. Specifically, we outline a proof of their result: every smooth Jordan curve inscribes every rectangle up to similarity.

Tue, 26 Nov 2024
14:00
C3

Rohit Sahasrabuddhe: Concise network models from path data

Rohit Sahasrabuddhe
(Mathematical Institute (University of Oxford))
Abstract

Networks provide a powerful language to model and analyse interconnected systems. Their building blocks are  edges, which can  then be combined to form walks and paths, and thus define indirect relations between distant nodes and model flows across the system. In a traditional setting, network models are first-order, in the sense that flow across nodes is made of independent sequences of transitions. However, real-world systems often exhibit higher-order dependencies, requiring more sophisticated models. Here, we propose a variable-order network model that captures memory effects by interpolating between first- and second-order representations. Our method identifies latent modes that explain second-order behaviors, avoiding overfitting through a Bayesian prior. We introduce an interpretable measure to balance model size and description quality, allowing for efficient, scalable processing of large sequence data. We demonstrate that our model captures key memory effects with minimal state nodes, providing new insights beyond traditional first-order models and avoiding the computational costs of existing higher-order models.

Fri, 28 Feb 2025

12:00 - 13:00
Quillen Room

Why Condensed Abelian Groups are Better Than Topological Abelian Groups

Jiacheng Tang
(University of Manchester)
Abstract

The category PAb of profinite abelian groups is an abelian category with many nice properties, which allows us to do most of standard homological algebra. The category PAb naturally embeds into the category TAb of topological abelian groups, but TAb is not abelian, nor does it have a satisfactory theory of tensor products. On the other hand, PAb also naturally embeds into the category CondAb of "condensed abelian groups", which is an abelian category with nice properties. We will show that the embedding of profinite modules into condensed modules (actually, into "solid modules") preserves usual homological notions such Ext and Tor, so that the condensed world might be a better place to study profinite modules than the topological world.

Characteristic functions of measures on geometric rough paths
Chevyrev, I Lyons, T (12 Jul 2013)
High-degree cubature on Wiener space through unshuffle expansions
Ferrucci, E Herschell, T Litterer, C Lyons, T (20 Nov 2024)
Anisotropy in Pantheon+ supernovae
Sah, A Rameez, M Sarkar, S Tsagas, C (16 Nov 2024)
Kemeny’s constant and the Lemoine point of a simplex
Devriendt, K Electronic Journal of Linear Algebra volume 40 766-773 (21 Nov 2024)
Subscribe to