Thu, 13 Jun 2024

12:00 - 13:00
L3

The mechanics of physical knots: from shoelaces to surgical sutures

Pedro M. Reis
(EPFL)
Further Information

 

Pedro M. Reis

Flexible Structures Laboratory, 

Institute of Mechanical Engineering,

Ecole Polytechnique Fédérale de Lausanne (EPFL), 

Pedro Miguel Reis is a Professor of Mechanical Engineering at the École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland. Prof. Reis received a B.Sc. in Physics from the University of Manchester, UK (1999), a Certificate of Advanced Studies in Mathematics (Part III Maths) from St. John’s College and DAMTP, University of Cambridge (2000), and a Ph.D. in physics from the University of Manchester (2004). He was a postdoc at the City College of New York (2004-2005) and at the CNRS/ESPCI in Paris (2005-2007). He joined MIT in 2007 as an Instructor in Applied Mathematics. In 2010, he moved to MIT’s School of Engineering, with dual appointments in Mechanical Engineering and Civil & Environmental Engineering, first as the Esther and Harold E. Edgerton Assistant Professor and, after 2014, as Gilbert W. Winslow Associate Professor. In October 2013, the Popular Science magazine named Prof. Reis to its 2013 “Brilliant 10” list of young stars in Science and Technology. In 2021, he was the President of the Society of Engineering Science (SES). Prof. Reis has also received the 2014 CAREER Award (NSF), the 2016 Thomas J.R. Hughes Young Investigator Award (Applied Mechanics Division of the ASME), the 2016 GSOFT Early Career Award for Soft Matter Research (APS), and he is a Fellow of the American Physical Society (APS).

Abstract

Even though most of us tie our shoelaces "wrongly," knots in ropes and filaments have been used as functional structures for millennia, from sailing and climbing to dewing and surgery. However, knowledge of the mechanics of physical knots is largely empirical, and there is much need for physics-based predictive models. Tight knots exhibit highly nonlinear and coupled behavior due to their intricate 3D geometry, large deformations, self-contact, friction, and even elasto-plasticity. Additionally, tight knots do not show separation of the relevant length scales, preventing the use of centerline-based rod models. In this talk, I will present an overview of recent work from our research group, combining precision experiments, Finite Element simulations, and theoretical analyses. First, we study the mechanics of two elastic fibers in frictional contact. Second, we explore several different knotted structures, including the overhand, figure-8, clove-hitch, and bowline knots. These knots serve various functions in practical settings, from shoelaces to climbing and sailing. Lastly, we focus on surgical knots, with a particularly high risk of failure in clinical settingsincluding complications such as massive bleeding or the unraveling of high-tension closures. Our research reveals a striking and robust power law, with a general exponent, between the mechanical strength of surgical knots, the applied pre-tension, and the number of throws, providing new insights into their operational and safety limits. These findings could have potential applications in the training of surgeons and enhanced control of robotic-assisted surgical devices.

 

Thu, 02 May 2024

12:00 - 13:00
L3

Path integral formulation of stochastic processes

Steve Fitzgerald
(University of Leeds)
Abstract

Traditionally, stochastic processes are modelled one of two ways: a continuum Fokker-Planck approach, where a PDE is solved to determine the time evolution of the probability density, or a Langevin approach, where the SDE describing the system is sampled, and multiple simulations are used to collect statistics. There is also a third way: the functional or path integral. Originally developed by Wiener in the 1920s to model Brownian motion, path integrals were famously applied to quantum mechanics by Feynman in the 1950s. However, they also have much to offer classical stochastic processes (and statistical physics).  

In this talk I will introduce the formalism at a physicist’s level of rigour, and focus on determining the dominant contribution to the path integral when the noise is weak. There exists a remarkable correspondence between the most-probable stochastic paths and Hamiltonian dynamics in an effective potential [1,2,3]. I will then discuss some applications, including reaction pathways conditioned on finite time [2]. We demonstrate that the most probable pathway at a finite time may be very different from the usual minimum energy path used to calculate the average reaction rate. If time permits, I will also discuss the extremely nonlinear crystal dislocation response to applied stress [4].  

[1] Ge, Hao, and Hong Qian. Int. J. Mod. Phys. B 26.24 1230012 (2012)     

[2] Fitzgerald, Steve, et al. J. Chem. Phys. 158.12 (2023).

[3] Honour, Tom and Fitzgerald, Steve. in press J. Phys. A (2024)

[4] Fitzgerald, Steve. Sci. Rep. 6 (1) 39708 (2016)

 

Thu, 16 May 2024

12:00 - 13:00
L3

Modelling liquid infiltration in a porous medium: perils of oversimplification

​Doireann O'Kiely
(University of Limerick)
Abstract

Mathematical modelling can support decontamination processes in a variety of ways.  In this talk, we focus on the contamination step: understanding how much of a chemical spill has seeped into the Earth or a building material, and how far it has travelled, are essential for making good decisions about how to clean it up.  

We consider an infiltration problem in which a chemical is poured on an initially unsaturated porous medium, and seeps into it via capillary action. Capillarity-driven flow through partially-saturated porous media is often modelled using Richards’ equation, which is a simplification of the Buckingham-Darcy equation in the limit where the infiltrating phase is much more viscous than the receding phase.  In this talk, I will explore the limitations of Richards equation, and discuss some scenarios in which predictions for small-but-finite viscosity ratios are very different to the Richards simplification.

Euler characteristics of affine ADE Nakajima quiver varieties via collapsing fibers
Bertsch, L Gyenge, Á Szendrői, B Gammelgaard, S (22 Oct 2023)
Spectral Distortions of the CMB as a Probe of Inflation, Recombination, Structure Formation and Particle Physics
Chluba, J Kogut, A Patil, S Abitbol, M Aghanim, N Ali-Haimoud, Y Amin, M Aumont, J Bartolo, N Basu, K Battistelli, E Battye, R Baumann, D Ben-Dayan, I Bolliet, B Bond, J Bouchet, F Burgess, C Burigana, C Byrnes, C Cabass, G Chuss, D Clesse, S Cole, P Dai, L de Bernardis, P Delabrouille, J Desjacques, V de Zotti, G Diacoumis, J Dimastrogiovanni, E Di Valentino, E Dunkley, J Durrer, R Dvorkin, C Ellis, J Eriksen, H Fasiello, M Fixsen, D Finelli, F Flauger, R Galli, S Garcia-Bellido, J Gervasi, M Gluscevic, V Grin, D Hart, L Hernandez-Monteagudo, C Hill, J Jeong, D Johnson, B Lagache, G Lee, E Lewis, A Liguori, M Kamionkowski, M Khatri, R Kohri, K Komatsu, E Kunze, K Mangilli, A Masi, S Mather, J Matarrese, S Miville-Deschenes, M Montaruli, T Munchmeyer, M Mukherjee, S Nakama, T Nati, F Ota, A Page, L Pajer, E Poulin, V Ravenni, A Reichardt, C Remazeilles, M Rotti, A Rubino-Martin, J Sarkar, A Sarkar, S Savini, G Scott, D Serpico, P Silk, J Souradeep, T Spergel, D Starobinsky, A Subrahmanyan, R Sunyaev, R Switzer, E Tartari, A Tashiro, H Thakur, R Trombetti, T Wallisch, B Wandelt, B Wehus, I Wollack, E Zaldarriaga, M Zannoni, M (11 Mar 2019)
Tue, 21 May 2024
16:00
L6

Fermions in low dimensions and non-Hermitian random matrices

Gernot Akemann
(Bielefeld University/University of Bristol)
Abstract

The ground state of N noninteracting Fermions in a rotating harmonic trap enjoys a one-to-one mapping to the complex Ginibre ensemble. This setup is equivalent to electrons in a magnetic field described by Landau levels. The mean, variance and higher order cumulants of the number of particles in a circular domain can be computed exactly for finite N and in three different large-N limits. In the bulk and at the edge of the spectrum the result is universal for a large class of rotationally invariant potentials. In the bulk the variance and entanglement entropy are proportional and satisfy an area law. The same universality can be proven for the quaternionic Ginibre ensemble and its corresponding generalisation. For the real Ginibre ensemble we determine the large-N limit at the origin and conjecture its universality in the bulk and at the edge.

 

Thu, 14 Mar 2024
16:00
L5

Free Interface Problems and Stabilizing Effects of Transversal Magnetic Fields

Professor Zhouping Xin
(The Chinese University of Hong Kong)
Abstract

Dynamical interface motions are important flow patterns and fundamental free boundary problems in fluid mechanics, and have attracted huge attention in the mathematical community. Such waves for purely inviscid fluids are subject to various instabilities such as Kelvin-Helmholtz and Rayleigh-Taylor instabilities unless other stabilizing effects such as surface tension, Taylor-sign conditions or dissipations are imposed. However, in the presence of magnetic fields, it has been known that tangential magnetic fields may have stabilizing effects for free surface waves such as plasma-vacuum or plasma-plasma interfaces (at least locally in time), yet whether transversal magnetic fields (which occurs often for interfacial waves for astrophysical plasmas) can stabilize typical free interfacial waves remain to be some open problems. In this talk, I will show the stabilizing effects of the transversal magnetic fields for some interfacial waves for both compressible and incompressible multi-dimensional magnetohydrodynamics (MHD).

First, I will present the local (in time) well-posedness in Sobolev space of multi- dimensional compressible MHD contact discontinuities, which are the most typical interfacial waves for astrophysical plasma and prototypical fundamental waves for systems of hyperbolic conservations. Such waves are characteristic discontinuities for which there is no flow across the discontinuity surface while the magnetic field crosses transversally, which leads to a two-phase free boundary problem that may have nonlinear Rayleigh- Taylor instability and whose front symbols have no ellipticity. We overcome such difficulties by exploiting full the transversality of the magnetic fields and designing a nonlinear approximate problem, which yields the local well-posed without loss of derivatives and without any other conditions such as Rayleigh-Taylor sign conditions or surface tension. Second, I will discuss some results on the global well-posedness of free interface problems for the incompressible inviscid resistive MHD with transversal magnetic fields. Both plasma-vacuum and plasma-plasma interfaces are studied. The global in time well-posedness of both interface problems in a horizontally periodic slab impressed by a uniform non-horizontal magnetic field near an equilibrium are established, which reveals the strong stabilizing effect of the transversal field as the global well- posedness of the free boundary incompressible Euler equations (without the irrotational assumptions) around an equilibrium is unknown. This talk is based on joint work with Professor Yanjin Wang. 

Tue, 07 May 2024
14:00
L6

On the density of complex eigenvalues of sub-unitary scattering matrices in quantum chaotic systems.

Yan Fyodorov
(King's College London)
Abstract

The scattering matrix in quantum mechanics must be unitary to ensure the conservation of the number of particles, hence their 
eigenvalues are unimodular.  In systems with fully developed Quantum Chaos  the statistics of those unimodular 
eigenvalues  is well described by  the Poisson kernel.
However, in real experiments  the associated scattering matrix is sub-unitary due to intrinsic losses,  and
 the moduli of S-matrix eigenvalues become non-trivial,  yet the corresponding theory is not well-developed in general.  
 I will present some results for the mean density of those moduli in the framework of random matrix models for the case of broken time-reversal invariance,
and discuss a way to get a generalization of the Poisson kernel to systems with uniform losses.

Mon, 18 Mar 2024 14:15 -
Tue, 19 Mar 2024 15:00
L2

Euler Equations and Mixed-Type Problems in Gas Dynamics and Geometry

Professor Dehua Wang
(University of Pittsburgh)
Further Information

This course is running as part of the National PDE Network Meeting being held in Oxford 18-21 March 2024, and jointly with the 13th Oxbridge PDE conference.

The course is broken into 3 sessions over two days, with all sessions taking place in L2:

14:15-14:55:    Short Course I-1 Monday 18 March

9:45-10:25:    Short Course I-2 Tuesday 19 March

14:15-14:55:    Short Course I-3 Tuesday 19 March

Euler Equations and Mixed-Type Problems in Gas Dynamics and Geometry WANG_Oxford2024.pdf

Abstract

 In this short course, we will discuss the Euler equations and applications in gas dynamics and geometry. First, the basic theory of Euler equations and mixed-type problems will be reviewed. Then we will present the results on the transonic flows past obstacles, transonic flows in the fluid dynamic formulation of isometric embeddings, and the transonic flows in nozzles. We will discuss global solutions and stability obtained through various techniques and approaches. The short course consists of three parts and is accessible to PhD students and young researchers.

Tue, 30 Apr 2024
16:00
L6

Best approximation by restricted divisor sums and random matrix integrals

Brad Rodgers (Queen's University, Kingston)
Abstract

Let X and H be large, and consider n ranging from 1 to X. For an arithmetic function f(n), what is the best mean square approximation of f(n) by a restricted divisor sum (a function of the sort sum_{d|n, d < H} a_d)? I hope to explain how for a wide variety of arithmetic functions, when X grows and H grows like a power of X, a solution of this problem is connected to the evaluation of random matrix integrals. The problem is connected to some combinatorial formula for computing high moments of traces of random unitary matrices and I hope to discuss this also.

Subscribe to