15:30
Strong regularization of differential equations with integrable drifts by fractional noise
Abstract
We consider stochastic differential equations (SDEs) driven by fractional Brownian motion with Hurst parameter less than 1/2. The drift is a measurable function of time and space which belongs to a certain Lebesgue space. Under subcritical regime, we show that a strong solution exists and is unique in path-by-path sense. When the noise is formally replaced by a Brownian motion, our results correspond to the strong uniqueness result of Krylov and Roeckner (2005). Our methods forgo standard approaches in Markovian settings and utilize Lyons' rough path theory in conjunction with recently developed tools. Joint work with Toyomu Matsuda and Oleg Butkovsky.