Non-nested Adaptive Timesteps in Multilevel Monte Carlo Computations
Giles, M Lester, C Whittle, J Monte Carlo and Quasi-Monte Carlo Methods volume 163 303-314 (14 Jun 2016)
Entropy, Elasticity, and the Isometric Embedding Problem:
Chen, G Slemrod, M Wang, D Hyperbolic Conservation Laws and Related Analysis with Applications volume 49 95-112 (28 Aug 2014)
Integer colorings with forbidden rainbow sums
Cheng, Y Jing, Y Li, L Wang, G Zhou, W Journal of Combinatorial Theory Series A volume 199 105769 (Oct 2023)
Mappings, dimensionality and reversing out of deep neural networks
Cui, Z Grindrod, P IMA Journal of Applied Mathematics volume 89 issue 1 2-11 (23 Jun 2023)
Thu, 22 Jun 2023
16:00
L5

Anticyclotomic Euler systems and Kolyvagins' methods

Christopher Skinner
(Princeton University)
Abstract

I will explain a formalism for anticyclotomic Euler systems for a large class of Galois representations and explain how to prove analogs of Kolyvagins' celebrated "rank one" results. A novelty of this approach lies in the use of primes that split in the CM field. This is joint work with Dimitar Jetchev and Jan Nekovar. I will also describe some higher-dimensional examples of such Euler systems.

Tue, 13 Jun 2023
16:00
L5

Revisiting the Euler system for imaginary quadratic fields

Christopher Skinner
(Princeton University)
Abstract

I will explain how to construct an Euler system for imaginary quadratic fields using Eisenstein series and their cohomology classes. This illustrates a template for a construction that should yield many new Euler systems.

Tue, 06 Jun 2023

11:00 - 12:00
L4

Renormalization of perturbative quantum gravity

David Prinz
(MPIM Bonn)
Abstract

General Relativity and Quantum Theory are the two main achievements of physics in the 20th century. Even though they have greatly enlarged the physical understanding of our universe, there are still situations which are completely inaccessible to us, most notably the Big Bang and the inside of black holes: These circumstances require a theory of Quantum Gravity — the unification of General Relativity with Quantum Theory. The most natural approach for that would be the application of the astonishingly successful methods of perturbative Quantum Field Theory to the graviton field, defined as the deviation of the metric with respect to a fixed background metric. Unfortunately, this approach seemed impossible due to the non-renormalizable nature of General Relativity. In this talk, I aim to give a pedagogical introduction to this topic, in particular to the Lagrange density, the Feynman graph expansion and the renormalization problem of their associated Feynman integrals. Finally, I will explain how this renormalization problem could be overcome by an infinite tower of gravitational Ward identities, as was established in my dissertation and the articles it is based upon, cf. arXiv:2210.17510 [hep-th].

Subscribe to