Musicians make most of their money from live performance these days, but recordings of live concerts can just make you long for the original studio versions. However, there are exceptions. Bruce is one of them. Here is a live version of Hungry Heart. If you want the original for comparison, here it is.
14:00
Condition numbers of tensor decompositions
Abstract
Tensor decomposition express a tensor as a linear combination of elementary tensors. They have applications in chemometrics, computer science, machine learning, psychometrics, and signal processing. Their uniqueness properties render them suitable for data analysis tasks in which the elementary tensors are the quantities of interest. However, in applications, the idealized mathematical model is corrupted by measurement errors. For a robust interpretation of the data, it is therefore imperative to quantify how sensitive these elementary tensors are to perturbations of the whole tensor. I will give an overview of recent results on the condition number of tensor decompositions, established with my collaborators C. Beltran, P. Breiding, and N. Dewaele.
Oxford Mathematician Arkady Wey has won the Gold Medal for mathematical sciences at the 2023 STEM for BRITAIN poster competition held in the House of Commons on March 6th. Arkady was among 20 researchers presenting their work to dozens of politicians and a panel of expert judges. Oxford Mathematician Oliver Bond was also shortlisted.
Embedded Deep Learning for Prediction and Control of Complex Turbulent Flows
Abstract
Accurately predicting turbulent fluid mechanics remains a significant challenge in engineering and applied science. Reynolds-Averaged Navier–Stokes (RANS) simulations and Large-Eddy Simulation (LES) are generally accurate, though non-Boussinesq turbulence and/or unresolved multiphysical phenomena can preclude predictive accuracy in certain regimes. In turbulent combustion, flame–turbulence interactions lead to inverse-cascade energy transfer, which violates the assumptions of many RANS and LES closures. We survey the regime dependence of these effects using a series of high-resolution Direct Numerical Simulations (DNS) of turbulent jet flames, from which an intermediate regime of heat-release effects, associated with the hypothesis of an “active cascade,” is apparent, with severe implications for physics- and data-driven closure models. We apply adjoint-based data assimilation method to augment the RANS and LES equations using trusted (though not necessarily high-fidelity) data. This uses a Python-native flow solver that leverages differentiable-programming techniques, automatic construction of adjoint equations, and solver-in-the-loop optimization. Applications to canonical turbulence, shock-dominated flows, aerodynamics, and flow control are presented, and opportunities for reacting flow modeling are discussed.
On the multi-indices approach to path-wise stochastic analysis
Abstract
Recently Linares-Otto-Tempelmayr have unveiled a very interesting algebraic structure which allows to define a new class of rough paths/regularity structures, with associated applications to stochastic PDEs or ODEs. This approach does not consider trees as combinatorial tools but their fertility, namely the function which associates to each integer k the number of vertices in the tree with exactly k children. In a joint work with J-D Jacques we have studied this algebraic structure and shown that it is related with a general and simple class of so-called post-Lie algebras. The construction has remarkable properties and I will try to present them in the simplest possible way.