14:15
The asymptotic geometry of the Hitchin moduli space
Abstract
Hitchin's equations are a system of gauge theoretic equations on a Riemann surface that are of interest in many areas including representation theory, Teichmüller theory, and the geometric Langlands correspondence. The Hitchin moduli space carries a natural hyperkähler metric. An intricate conjectural description of its asymptotic structure appears in the work of Gaiotto-Moore-Neitzke and there has been a lot of progress on this recently. I will discuss some recent results using tools coming out of geometric analysis which are well-suited for verifying these extremely delicate conjectures. This strategy often stretches the limits of what can currently be done via geometric analysis, and simultaneously leads to new insights into these conjectures.
16:00
Cotlar identities for groups acting on tree like structures
Abstract
The Hilbert transform H is a basic example of a Fourier multiplier, and Riesz proved that H is a bounded operator on Lp(T) for all p between 1 and infinity. We study Hilbert transform type Fourier multipliers on group algebras and their boundedness on corresponding non-commutative Lp spaces. The pioneering work in this direction is due to Mei and Ricard who proved Lp-boundedness of Hilbert transforms on free group von Neumann algebras using a Cotlar identity. In this talk, we introduce a generalised Cotlar identity and a new geometric form of Hilbert transform for groups acting on tree-like structures. This class of groups includes amalgamated free products, HNN extensions, left orderable groups and many others. This is joint work with Adrián González and Javier Parcet.
16:00
Some algebraic aspects of minimal dynamics on the Cantor set
Abstract
By Jewett-Krieger theorems minimal dynamical systems on the Cantor set are topological analogous of ergodic systems on probability Lebesgue spaces. In this analogy and to study a Cantor minimal system, indicator functions of clopen sets (as continuous integer or real valued functions) are considered while they are mod out by the subgroup of all co-boundary functions. That is how dimension group which is an operator algebraic object appears in dynamical systems. In this talk, I try to explain a bit more about dimension groups from dynamical point of view and how it relates to topological factoring and spectrum of Cantor minimal systems.
16:00
On the joint spectral radius
Abstract
The joint spectral radius of a finite family S of matrices measures the rate of exponential growth of the maximal norm of an element from the product set S^n as n grows. This notion was introduced by Rota and Strang in the 60s. It arises naturally in a number of contexts in pure and applied mathematics. I will discuss its basic properties and focus on a formula of Berger and Wang and results of J. Bochi that extend to several matrices the classical for formula of Gelfand that relates the growth rate of the powers of a single matrix to its spectral radius. I give new proofs and derive explicit estimates with polynomial dependence on the dimension, refining these results. If time permits I will also discuss connections with the Tits alternative, the notion of joint spectrum, and a geometric version of these results regarding groups acting on non-positively curved spaces.