Tue, 14 Mar 2023

10:00 - 12:00
L4

Gradient flows in metric spaces: overview and recent advances

Dr Antonio Esposito
(University of Oxford)
Further Information

Sessions led by Dr Antonio Esposito will take place on

14 March 2023 10:00 - 12:00 L4

16 March 2023 10:00 - 12:00 L4

21 March 2023 10:00 - 12:00 L6

22 March 2023 10:00 - 12:00 L6

Should you be interested in taking part in the course, please send an email to @email.

Abstract

This DPhil short course will serve as an introduction to the theory of gradient flows with an emphasis on the recent advances in metric spaces. More precisely, we will start with an overview of gradient flows from the Euclidean theory to its generalisation to metric spaces, in particular Wasserstein spaces. This also includes a short introduction to the Optimal Transport theory, with a focus on specific concepts and tools useful subsequently. We will then analyse the time-discretisation scheme à la Jordan--Kinderlehrer-Otto (JKO), also known as minimising movement, and discuss the role of convexity in proving stability, uniqueness, and long-time behaviour for the PDE under study. Finally, we will comment on recent advances, e.g., in the study of PDEs on graphs and/or particle approximation of diffusion equations.

Mon, 20 Feb 2023

14:00 - 15:00
L6

Gradient flows and randomised thresholding: sparse inversion and classification

Jonas Latz
(Heriot Watt University Edinburgh)
Abstract

Sparse inversion and classification problems are ubiquitous in modern data science and imaging. They are often formulated as non-smooth minimisation problems. In sparse inversion, we minimise, e.g., the sum of a data fidelity term and an L1/LASSO regulariser. In classification, we consider, e.g., the sum of a data fidelity term and a non-smooth Ginzburg--Landau energy. Standard (sub)gradient descent methods have shown to be inefficient when approaching such problems. Splitting techniques are much more useful: here, the target function is partitioned into a sum of two subtarget functions -- each of which can be efficiently optimised. Splitting proceeds by performing optimisation steps alternately with respect to each of the two subtarget functions.

In this work, we study splitting from a stochastic continuous-time perspective. Indeed, we define a differential inclusion that follows one of the two subtarget function's negative subdifferential at each point in time. The choice of the subtarget function is controlled by a binary continuous-time Markov process. The resulting dynamical system is a stochastic approximation of the underlying subgradient flow. We investigate this stochastic approximation for an L1-regularised sparse inversion flow and for a discrete Allen-Cahn equation minimising a Ginzburg--Landau energy. In both cases, we study the longtime behaviour of the stochastic dynamical system and its ability to approximate the underlying subgradient flow at any accuracy. We illustrate our theoretical findings in a simple sparse estimation problem and also in low- and high-dimensional classification problems.

 

Mon, 27 Mar 2023

14:00 - 15:00
Lecture Room 6

No Seminar

Tbc
Abstract

Tbc

AAA interpolation of equispaced data
Trefethen, L BIT Numerical Mathematics volume 63 (14 Mar 2023)

You have to admire anyone who can stay at the top of their game for over 20 years, especially in the world of popular music (and maths, of course). Beyoncé Knowles-Carter remains as commercially and critically successful as ever with this song high up in 2022 song of the year lists.

If you don't want Beyoncé swearing at you, here's the radio version

Mon, 06 Mar 2023
15:30
L4

Homeomorphisms of surfaces: a new approach

Richard Webb
(University of Manchester)
Abstract

Despite their straightforward definition, the homeomorphism groups of surfaces are far from straightforward. Basic algebraic and dynamical problems are wide open for these groups, which is a far cry from the closely related and much better understood mapping class groups of surfaces. With Jonathan Bowden and Sebastian Hensel, we introduced the fine curve graph as a tool to study homeomorphism groups. Like its mapping class group counterpart, it is Gromov hyperbolic, and can shed light on algebraic properties such as scl, via geometric group theoretic techniques. This brings us to the enticing question of how much of Thurston's theory (e.g. Nielsen--Thurston classification, invariant foliations, etc.) for mapping class groups carries over to the homeomorphism groups. We will describe new phenomena which are not encountered in the mapping class group setting, and meet some new connections with topological dynamics, which is joint work with Bowden, Hensel, Kathryn Mann and Emmanuel Militon. I will survey what's known, describe some of the new and interesting problems that arise with this theory, and give an idea of what's next.

 

Mon, 27 Feb 2023
15:30
L4

SL(2,C)-character varieties of knots and maps of degree 1

Raphael Zentner
(Durham University)
Abstract

We ask to what extend the SL(2,C)-character variety of the
fundamental group of the complement of a knot in S^3 determines the
knot. Our methods use results from group theory, classical 3-manifold
topology, but also geometric input in two ways: the geometrisation
theorem for 3-manifolds, and instanton gauge theory. In particular this
is connected to SU(2)-character varieties of two-component links, a
topic where much less is known than in the case of knots. This is joint
work with Michel Boileau, Teruaki Kitano, and Steven Sivek.

Subscribe to