Structural electroneutrality in Onsager–Stefan–Maxwell transport with charged species
Van-Brunt, A Farrell, P Monroe, C Electrochimica Acta volume 441 (28 Dec 2022)
Image as described in the article

In 1900, David Hilbert posed his list of 23 mathematical problems. While some of them have been resolved in subsequent years, a few of his challenging questions remain unanswered to this day. One of them is Hilbert's 16th problem, which asks questions about the number of limit cycles that a system of ordinary differential equations can have. Such equations appear in modelling real-world systems in biological, chemical or physical applications, where their solutions are functions of time.

Testing Hadronic Interaction Models with Cosmic Ray Measurements at the IceCube Neutrino Observatory
Verpoest, S Soldin, D De Ridder, S Abbasi, R Ackermann, M Adams, J Aguilar, J Ahlers, M Ahrens, M Alispach, C Alves, A Amin, N An, R Andeen, K Anderson, T Anton, G Argüelles, C Ashida, Y Axani, S Bai, X Balagopal, A Barbano, A Barwick, S Bastian, B Basu, V Baur, S Bay, R Beatty, J Becker, K Becker Tjus, J Bellenghi, C BenZvi, S Berley, D Bernardini, E Besson, D Binder, G Bindig, D Blaufuss, E Blot, S Boddenberg, M Bontempo, F Borowka, J Böser, S Botner, O Böttcher, J Bourbeau, E Bradascio, F Braun, J Bron, S Brostean-Kaiser, J Browne, S Burgman, A Burley, R Busse, R Campana, M Carnie-Bronca, E Chen, C Chirkin, D Choi, K Clark, B Clark, K Classen, L Coleman, A Collin, G Conrad, J Coppin, P Correa, P Cowen, D Cross, R Dappen, C Dave, P De Clercq, C DeLaunay, J Dembinski, H Deoskar, K Desai, A Desiati, P de Vries, K de Wasseige, G de With, M DeYoung, T Dharani, S Diaz, A Díaz-Vélez, J Dittmer, M Dujmovic, H Dunkman, M DuVernois, M Dvorak, E Ehrhardt, T Eller, P Engel, R Erpenbeck, H Evans, J Evenson, P Fan, K Fazely, A Fiedlschuster, S Fienberg, A Proceedings of Science volume 395 (18 Mar 2022)
Study of Mass Composition of Cosmic Rays with IceTop and IceCube
Koundal, P Plum, M Saffer, J Abbasi, R Ackermann, M Adams, J Aguilar, J Ahlers, M Ahrens, M Alispach, C Alves, A Amin, N An, R Andeen, K Anderson, T Anton, G Argüelles, C Ashida, Y Axani, S Bai, X Balagopal, A Barbano, A Barwick, S Bastian, B Basu, V Baur, S Bay, R Beatty, J Becker, K Becker Tjus, J Bellenghi, C BenZvi, S Berley, D Bernardini, E Besson, D Binder, G Bindig, D Blaufuss, E Blot, S Boddenberg, M Bontempo, F Borowka, J Böser, S Botner, O Böttcher, J Bourbeau, E Bradascio, F Braun, J Bron, S Brostean-Kaiser, J Browne, S Burgman, A Burley, R Busse, R Campana, M Carnie-Bronca, E Chen, C Chirkin, D Choi, K Clark, B Clark, K Classen, L Coleman, A Collin, G Conrad, J Coppin, P Correa, P Cowen, D Cross, R Dappen, C Dave, P De Clercq, C DeLaunay, J Dembinski, H Deoskar, K De Ridder, S Desai, A Desiati, P de Vries, K de Wasseige, G de With, M DeYoung, T Dharani, S Diaz, A Díaz-Vélez, J Dittmer, M Dujmovic, H Dunkman, M DuVernois, M Dvorak, E Ehrhardt, T Eller, P Engel, R Erpenbeck, H Evans, J Evenson, P Fan, K Fazely, A Fiedlschuster, S Fienberg, A Proceedings of Science volume 395 (18 Mar 2022)
Mon, 06 Feb 2023
13:00
L1

Distinguishing SCFTs in Four and Six Dimensions

Craig Lawrie
(DESY)
Abstract

When do two quantum field theories describe the same physics? I will discuss some approaches to this question in the context of superconformal field theories in four and six dimensions. First, I will discuss the construction of 6d (1,0) SCFTs from the perspective of the "atomic classification", focussing on an oft-overlooked subtlety whereby distinct SCFTs in fact share an effective description on the generic point of the tensor branch. We will see how to determine the difference in the Higgs branch operator spectrum from the atomic perspective, and how that agrees with a dual class S perspective. I will explain how other 4d N=2 SCFTs, which a priori look like distinct theories, can be shown to describe the same physics, as they arise as torus-compactifications of identical 6d theories.

Mon, 27 Feb 2023
13:00
L1

Towards Hodge-theoretic characterizations of 2d rational SCFTs

Taizan Watari
(Kavli IPMU)
Abstract

A 2d SCFT given as a non-linear sigma model of a Ricci-flat Kahler target 

space is not a rational CFT in general; only special points in the moduli 

space of the target-space metric, the 2d SCFTs are rational. 

Gukov-Vafa's paper in 2002 hinted at a possibility that such special points 

may be characterized by the property "complex multiplication" of the target space, 

which has its origin in number theory. We revisit the idea, refine the Conjecture, 

and prove it in the case the target space is T^4. 
 

This presentation is based on arXiv:2205.10299 and 2212.13028 .

Expander graph propagation
Deac, A Lackenby, M Velickovic, P Proceedings of Machine Learning Research volume 198 38:1-38:18 (21 Dec 2022)
Mon, 23 Jan 2023
15:30
L4

Unramified correspondence and virtual homology of mapping class groups

Vladmir Markovic (University of Oxford)
Abstract

I shall discuss my recent work showing that the Bogomolov-Tschinkel universality conjecture holds if and only if the mapping class groups of a punctured surface is large. One consequence of this result is that all genus 2 surface-by-surface (and all genus 2 surface-by-free) groups are virtually algebraically fibered. Moreover, I will explain why simple curve homology does not always generate homology of finite covers of closed surface. I will also mention my work with O. Tosic regarding the Putman-Wieland conjecture, and explain the partial solution to the Prill's problem about algebraic curves.

 

Mon, 16 Jan 2023
15:30
L4

Chromatic-polynomial identities from fusion categories

Paul Fendley (University of Oxford)
Abstract

The chromatic polynomial \chi(Q) can be defined for any graph, such that for Q integer it counts the number of colourings. It has many remarkable properties, and I describe several that are derived easily by using fusion categories, familiar from topological quantum field theory. In particular, I define the chromatic algebra, a planar algebra whose evaluation gives the chromatic polynomial. Linear identities of the chromatic polynomial at certain values of Q then follow from the Jones-Wenzl projector of the associated category. An unusual non-linear one called Tutte's golden identity relates \chi(\phi+2) for planar triangulations to the square of \chi(\phi+1), where \phi is the golden mean. Tutte's original proof is purely combinatorial. I will give here an elementary proof by manipulations of a topological invariant related to the Jones polynomial. Time permitting, I will also mention analogous identities for graphs on more general surfaces. Based on work with Slava Krushkal.

Subscribe to