bounds
bounds
16:00
Braided tensor categories as invariants of von Neumann algebras
Abstract
In the operator algebraic approach to quantum field theory, the DHR category is a braided tensor category describing topological point defects of a theory with at least 1 (+1) dimensions. A single von Neumann algebra with no extra structure can be thought of as a 0 (+1) dimensional quantum field theory. In this case, we would not expect a braided tensor category of point defects since there are not enough dimensions to implement a braiding. We show, however, that one can think of central sequence algebras as operators localized ``at infinity", and apply the DHR recipe to obtain a braided tensor category of bimodules of a von Neumann algebra M, which is a Morita invariant. When M is a II_1 factor, the braided subcategory of automorphic objects recovers Connes' chi(M) and Jones' kappa(M). We compute this for II_1 factors arising naturally from subfactor theory and show that any Drinfeld center of a fusion category can be realized. Based on joint work with Quan Chen and Dave Penneys.
16:00
Partial Pontryagin duality for actions of quantum groups on C*-algebras
Abstract
In view of Takesaki-Takai duality, we can go back and forth between C*-dynamical systems of an abelian group and ones of its Pontryagin dual by taking crossed products. In this talk, I present a similar duality between actions on C*-algebras of two constructions of locally compact quantum groups: one is the bicrossed product due to Vaes-Vainerman, and the other is the double crossed product due to Baaj-Vaes. I will explain the situation by illustrating the example coming from groups. If time permits, I will also discuss its consequences in the case of quantum doubles.
16:00
A finite-dimensional approach to K-homology.
Abstract
K-homology is the dual theory to K-theory for C*-algebras. I will show how under appropriate quasi-diagonality and countability assumptions K-homology (more generally, KK-theory) can be realized by completely positive and contractive, and approximately multiplicative, maps to matrix algebras modulo an appropriate equivalence relation. I’ll briefly explain some connections to manifold topology and existence / uniqueness theorems in C*-algebra classification theory (due to Dadarlat and Eilers).
Some of this is based on joint work with Guoliang Yu, and some is work in progress