Tue, 02 Nov 2021

15:30 - 16:30
L6

Unitary Invariant Ensembles and Symmetric Function Theory

Bhargavi Jonnadula
(University of Oxford)
Abstract

In this talk, we use tools from representation theory and symmetric function theory to compute correlations of eigenvalues of unitary invariant ensembles. This approach provides a route to write exact formulae for the correlations, which further allows us to extract large matrix asymptotics and study universal properties.

Mon, 25 Oct 2021

12:45 - 13:45
Virtual

Random Matrix Theory for the Black Hole Interior

Mark Mezei
(Simons Center for Geometry and Physics)
Further Information

NOTE UNUSUAL DAY AND TIME: Monday/12:45pm

Abstract

In recent years a fruitful interplay has been unfolding between quantum chaos and black holes. In the first part of the talk, I provide a sampler of these developments. Next, we study the fate of the black hole interior at late times in simple models of quantum gravity that have dual descriptions in terms of Random Matrix Theory. We find that the volume of the interior grows linearly at early times and then, due to non-perturbative effects, saturates at a time and towards a value that are exponentially large in the entropy of the black hole. This provides a confirmation of the complexity equals volume proposal of Susskind, since in chaotic systems complexity is also expected to exhibit the same behavior.

Tue, 19 Oct 2021

15:30 - 16:30
L6

TBA

Philip Cohen
(University of Oxford)
Further Information

POSTPONED TO A LATER DATE

Abstract

TBA

Fri, 05 Nov 2021

15:30 - 16:30
C6

Short talks from Algebra PhDs

Algebra DPhil students
(University of Oxford)
Further Information

A collection of bite-size 10-15 minute talks from current DPhil students in the Algebra group. The talks will be accessible to masters students and above.

With plenty of opportunity to chat to current students about what doing a PhD in algebra and representation theory is like!

Tue, 16 Nov 2021
14:00
L3

Homology torsion growth in finitely presented pro-p groups

Nikolay Nikolov
(Oxford University)
Abstract

Let $G$ be a finitely presented residually finite group. We are interested in the growth of size of the torsion of $H^{ab}$ as a function of $|G:H|$ where $H$ ranges over normal subgroups of finite index in $G$. It is easy to see that this grows at most exponentially in terms of $|G:H|$. Of particular interest is the case when $G$ is an arithmetic hyperbolic 3-manifold group and $H$ ranges over its congruence subgroups. Proving exponential lower bounds on the torsion appears to be difficult and in this talk I will focus on the situation of finitely presented pro-$p$ groups.

In contrast with abstract groups I will show that in finitely presented pro-$p$ groups torsion in the abelianizations can grow arbitrarily fast. The examples are rather 'large' pro-$p$ groups, in particular they are virtually Golod-Shafarevich. When we restrict to $p$-adic analytic groups the torsion growth is at most polynomial.

Mon, 08 Nov 2021

16:00 - 17:00
C1

TBA

George Robinson
(Oxford)
Abstract

The Jacquet-Langlands correspondence gives a relationship between automorphic representations on $GL_2$ and its twisted forms, which are the unit groups of quaternion algebras. Writing this out in more classical language gives a combinatorial way of producing the eigenvalues of Hecke operators acting on modular forms. In this talk, we will first go over notions of modular forms and quaternion algebras, and then dive into an explicit example by computing some eigenvalues of the lowest level quaternionic modular form of weight $2$ over $\mathbb{Q}$.

Mon, 25 Oct 2021

16:00 - 17:00
C2

Hyperelliptic continued fractions

Francesco Ballini
(Oxford)
Abstract

We can define a continued fraction for formal series $f(t)=\sum_{i=-\infty}^d c_it^i$ by repeatedly removing the polynomial part, $\sum_{i=0}^d c_it^i$, (the equivalent of the integer part) and inverting the remaining part, as in the real case. This way, the partial quotients are polynomials. Both the usual continued fractions and the polynomial continued fractions carry properties of best approximation. However, while for square roots of rationals the real continued fraction is eventually periodic, such periodicity does not always occur for $\sqrt{D(t)}$. The correct analogy was found by Abel in 1826: the continued fraction of $\sqrt{D(t)}$ is eventually periodic if and only if there exist nontrivial polynomials $x(t)$, $y(t)$ such that $x(t)^2-D(t)y(t)^2=1$ (the polynomial Pell equation). Notice that the same holds also for square root of integers in the real case. In 2014 Zannier found that some periodicity survives for all the $\sqrt{D(t)}$: the degrees of their partial quotients are eventually periodic. His proof is strongly geometric and it is based on the study of the Jacobian of the curve $u^2=D(t)$. We give a brief survey of the theory of polynomial continued fractions, Jacobians and an account of the proof of the result of Zannier.

Mon, 18 Oct 2021

16:00 - 17:00
C1
Mon, 11 Oct 2021

16:00 - 17:00
C1

Computing p-adic L-functions of Hecke characters

Håvard Damm-Johnsen
(Oxford)
Abstract

In 1973, Serre defined $p$-adic modular forms as limits of modular forms, and constructed the Leopoldt-Kubota $L$-function as the constant term of a limit of Eisenstein series. This was extended by Deligne-Ribet to totally real number fields, and Lauder and Vonk have developed an algorithm for interpolating $p$-adic $L$-functions of such fields using Serre's idea. We explain what an $L$-function is and why you should care, and then move on to giving an overview of the algorithm, extensions, and applications.

Subscribe to