Random forests and the OSp(1|2) nonlinear sigma model
Abstract
Given a finite graph, the arboreal gas is the measure on forests (subgraphs without cycles) in which each edge is weighted by a parameter β greater than 0. Equivalently this model is bond percolation conditioned to be a forest, the independent sets of the graphic matroid, or the q→0 limit of the random cluster representation of the q-state Potts model. Our results rely on the fact that this model is also the graphical representation of the nonlinear sigma model with target space the fermionic hyperbolic plane H^{0|2}, whose symmetry group is the supergroup OSp(1|2).
The main question we are interested in is whether the arboreal gas percolates, i.e., whether for a given β the forest has a connected component that includes a positive fraction of the total edges of the graph. We show that in two dimensions a Mermin-Wagner theorem associated with the OSp(1|2) symmetry of the nonlinear sigma model implies that the arboreal gas does not percolate for any β greater than 0. On the other hand, in three and higher dimensions, we show that percolation occurs for large β by proving that the OSp(1|2) symmetry of the non-linear sigma model is spontaneously broken. We also show that the broken symmetry is accompanied by massless fluctuations (Goldstone mode). This result is achieved by a renormalisation group analysis combined with Ward identities from the internal symmetry of the sigma model.
A Hele-Shaw Newton's cradle and Reciprocity in Fluids
Abstract
A Hele-Shaw Newton's cradle: Circular bubbles in a Hele-Shaw channel. (Daniel Booth)
We present a model for the motion of approximately circular bubbles in a Hele-Shaw cell. The bubble velocity is determined by a balance between the hydrodynamic pressures from the external flow and the drag due to the thin films above and below the bubble. We find that the qualitative behaviour depends on a dimensionless parameter and is found to agree well with experimental observations. Furthermore, we show how the effects of interaction with cell boundaries and/or other bubbles also depend on the value of this dimensionless parameter For example, in a train of three identical bubbles travelling along the centre line, the middle bubble either catches up with the one in front or is caught by the one behind, forming what we term a Hele-Shaw Newton's cradle.
Reciprocity in Fluids (Matthew Cotton)
Reciprocity is a useful, and often underused, way to calculate integrated quantities when a to solution to a related problem is known. In the remaining time, I will overview these ideas and give some example use cases
10:00
Developing a method for testing the reactivity of silicon carbide (SiC) and silicon monoxide (SiO(g))
Note: we would recommend to join the meeting using the Teams client for best user experience.
Abstract
Elkem is developing a new method for categorising the reactivity between silicon carbide (SiC) powder and silicon monoxide gas (SiO(g)). Experiments have been designed which pass SiO gas through a powdered bed of SiC inside of a heated crucible, resulting in a reaction between the two. The SiO gas is produced via a secondary reaction outside of the SiC bed. Both reactions require specific temperature and pressure constraints to occur. Therefore, we would like to mathematically model the temperature distribution and gas flow within the experimental set-up to provide insight into how we can control the process.
Complexities arise from:
- Endothermic reactions causing heat sinks
- Competing reactions beyond the two we desire
- Dynamically changing properties of the bed, such as permeability
Flows around some soft corals
Please note the change of time for this seminar at 2pm GMT.
Laura Miller is Professor of Mathematics. Her research group, 'investigate[s] changes in the fluid dynamic environment of organisms as they grow or shrink in size over evolutionary or developmental time.' (Taken from her group website here: https://sites.google.com/site/swimflypump/home?authuser=0)
Abstract
In this presentation, I will discuss the construction and results of numerical simulations quantifying flows around several species of soft corals. In the first project, the flows near the tentacles of xeniid soft corals are quantified for the first time. Their active pulsations are thought to enhance their symbionts' photosynthetic rates by up to an order of magnitude. These polyps are approximately 1 cm in diameter and pulse at frequencies between approximately 0.5 and 1 Hz. As a result, the frequency-based Reynolds number calculated using the tentacle length and pulse frequency is on the order of 10 and rapidly decays as with distance from the polyp. This introduces the question of how these corals minimize the reversibility of the flow and bring in new volumes of fluid during each pulse. We estimate the Péclet number of the bulk flow generated by the coral as being on the order of 100–1000 whereas the flow between the bristles of the tentacles is on the order of 10. This illustrates the importance of advective transport in removing oxygen waste. In the second project, the flows through the elaborate branching structures of gorgonian colonies are considered. As water moves through the elaborate branches, it is slowed, and recirculation zones can form downstream of the colony. At the smaller scale, individual polyps that emerge from the branches expand their tentacles, further slowing the flow. At the smallest scale, the tentacles are covered in tiny pinnules where exchange occurs. We quantified the gap to diameter ratios for various gorgonians at the scale of the branches, the polyp tentacles and the pinnules. We then used computational fluid dynamics to determine the flow patterns at all three levels of branching. We quantified the leakiness between the branches, tentacles and pinnules over the biologically relevant range of Reynolds numbers and gap-to-diameter ratios, and found that the branches and tentacles can act as either leaky rakes or solid plates depending upon these dimensionless parameters. The pinnules, in contrast, mostly impede the flow. Using an agent-based modeling framework, we quantified plankton capture as a function of the gap-to diameter ratio of the branches and the Reynolds number. We found that the capture rate depends critically on both morphology and Reynolds number.