A Matrix-Mimetic Tensor Algebra for Optimal Representations of Multiway Data
Abstract
The data revolution has changed the landscape of computational mathematics and has increased the demand for new numerical linear algebra tools to handle the vast amount of data. One crucial task is data compression to capture the inherent structure of data efficiently. Tensor-based approaches have gained significant traction in this setting by exploiting multilinear relationships in multiway data. In this talk, we will describe a matrix-mimetic tensor algebra that offers provably optimal compressed representations of high-dimensional data. We will compare this tensor-algebraic approach to other popular tensor decomposition techniques and show that our approach offers both theoretical and numerical advantages.