Preconditioners for Two-Phase Incompressible Navier-Stokes Flow
Bootland, N
Bentley, A
Kees, C
Wathen, A
(24 Oct 2017)
Multipreconditioning with application to two-phase incompressible Navier-Stokes flow
Bootland, N
Wathen, A
(15 May 2020)
Applications of AAA rational approximation
Nakatsukasa, Y
Trefethen, L
(17 Oct 2025)
Applications of AAA rational approximation
Nakatsukasa, Y
Trefethen, L
Acta Numerica
Mon, 26 Jan 2026
17:00 -
18:00
L1
Enhancing Wind Energy Using Unsteady Fluid Mechanics
Prof. John Dabiri
(California Institute of Technology, USA)
Further Information
For more information, please visit: The Brooke Benjamin Lecture in Fluid Mechanics | Mathematical Institute
Abstract
This talk will describe recent studies of how time-dependent, unsteady flow physics can be exploited to improve the performance of energy harvesting systems such as wind turbines. A theoretical analysis will revisit the seminal Betz derivation to identify the role of unsteady flow from first principles. Following will be a discussion of an experimental campaign to test the predictions of the theoretical model. Finally, a new line of research related to turbulence transition and inspired by the work of T. Brooke Benjamin will be introduced.
Wed, 03 Dec 2025
16:00 -
17:00
L6
Letting AI untie the Knots
Ludovico Morellato
(Università degli Studi di Padova)
Abstract
In Knot Theory, one of the main interests is understanding when two knots are equivalent: even if they look completely different, one could actually be continuously deformed into the other.
Our main tool for this purpose are the topological invariants associated to a knot. However, computing them is not in general an easy task: it boils down to make a sequence of choices, a rather difficult work for us human. This is why, in recent years, mathematicians have begun using AI-driven solutions to compute these invariants, hoping that machines can identify patterns within the apparent chaos of possibilities.
In this talk, we are going to see how to compute two fundamental invariants, namely Unknotting Number and Slice Genus, with the aid of a Reinforcement Learning (RL) agent. We will start with the basic definitions from Knot Theory and Deep Learning, focusing on concepts rather than technical details, with the ultimate goal of understanding what RL is and how we can exploit it.
Our main tool for this purpose are the topological invariants associated to a knot. However, computing them is not in general an easy task: it boils down to make a sequence of choices, a rather difficult work for us human. This is why, in recent years, mathematicians have begun using AI-driven solutions to compute these invariants, hoping that machines can identify patterns within the apparent chaos of possibilities.
In this talk, we are going to see how to compute two fundamental invariants, namely Unknotting Number and Slice Genus, with the aid of a Reinforcement Learning (RL) agent. We will start with the basic definitions from Knot Theory and Deep Learning, focusing on concepts rather than technical details, with the ultimate goal of understanding what RL is and how we can exploit it.
Adaptive-Robust Portfolio Optimisation
Bhudisaksang, T
Cartea, Á
Sanchez Betancourt, L
Mathematics and Financial Economics
The LED calibration systems for the mDOM and D-Egg sensor modules of the IceCube Upgrade: Design, production, testing and use in module calibration
Abbasi, R
Ackermann, M
Adams, J
Agarwalla, S
Aguilar, J
Ahlers, M
Alameddine, J
Ali, S
Amin, N
Andeen, K
Argüelles, C
Ashida, Y
Athanasiadou, S
Axani, S
Babu, R
Bai, X
Baines-Holmes, J
V., A
Barwick, S
Bash, S
Basu, V
Bay, R
Beatty, J
Tjus, J
Behrens, P
Beise, J
Bellenghi, C
Benkel, B
BenZvi, S
Berley, D
Bernardini, E
Besson, D
Blaufuss, E
Bloom, L
Blot, S
Bodo, I
Bontempo, F
Motzkin, J
Meneguolo, C
Böser, S
Botner, O
Böttcher, J
Braun, J
Brinson, B
Brisson-Tsavoussis, Z
Burley, R
Butterfield, D
Campana, M
Carloni, K
Carpio, J
Chattopadhyay, S
Chau, N
Chen, Z
Chirkin, D
Choi, S
Clark, B
Coleman, A
Coleman, P
Collin, G
Borja, D
Connolly, A
Conrad, J
Corley, R
Cowen, D
De Clercq, C
DeLaunay, J
Delgado, D
Delmeulle, T
Deng, S
Desiati, P
de Vries, K
de Wasseige, G
DeYoung, T
Díaz-Vélez, J
DiKerby, S
Dittmer, M
Domi, A
Draper, L
Dueser, L
Durnford, D
Dutta, K
DuVernois, M
Ehrhardt, T
Eidenschink, L
Eimer, A
Eller, P
Ellinger, E
Elsässer, D
Engel, R
Erpenbeck, H
Esmail, W
Eulig, S
Evans, J
Evenson, P
Fan, K
Fang, K
Farrag, K
Fazely, A
Fedynitch, A
Feigl, N
Finley, C
Fischer, L
Fox, D
Franckowiak, A
Fukami, S
Fürst, P
Gallagher, J
Ganster, E
Garcia, A
Garcia, M
Garg, G
Genton, E
Gerhardt, L
Ghadimi, A
Glaser, C
Glüsenkamp, T
Gonzalez, J
Goswami, S
Granados, A
Grant, D
Gray, S
Gravois, M
Griffin, S
Griswold, S
Groth, K
Guevel, D
Günther, C
Gutjahr, P
Ha, C
Haack, C
Hallgren, A
Halve, L
Halzen, F
Hamacher, L
Minh, M
Handt, M
Hanson, K
Hardin, J
Harnisch, A
Hatch, P
Haungs, A
Häußler, J
Helbing, K
Hellrung, J
Henke, B
Hennig, L
Henningsen, F
Heuermann, L
Hewett, R
Heyer, N
Hickford, S
Hidvegi, A
Hill, C
Hill, G
Hmaid, R
Hoffman, K
Hooper, D
Hori, S
Hoshina, K
Hostert, M
Hou, W
Huber, T
Hultqvist, K
Hymon, K
Ishihara, A
Iwakiri, W
Jacquart, M
Jain, S
Janik, O
Jansson, M
Jeong, M
Jin, M
Kamp, N
Kang, D
Kang, W
Kang, X
Kappes, A
Kardum, L
Karg, T
Karl, M
Karle, A
Katil, A
Kauer, M
Kelley, J
Khanal, M
Zathul, A
Kheirandish, A
Kimku, H
Kiryluk, J
Klein, C
Klein, S
Kobayashi, Y
Kochocki, A
Koirala, R
Kolanoski, H
Kontrimas, T
Köpke, L
Kopper, C
Koskinen, D
Koundal, P
Kowalski, M
Kozynets, T
Krieger, N
Krishnamoorthi, J
Krishnan, T
Kruiswijk, K
Krupczak, E
Kumar, A
Kun, E
Kurahashi, N
Kurt, E
Lad, N
Gualda, C
Arnaud, L
Lamoureux, M
Larson, M
Lauber, F
Lazar, J
DeHolton, K
Leszczyńska, A
Liao, J
Lin, C
Liu, Y
Liubarska, M
Love, C
Lu, L
Lucarelli, F
Luszczak, W
Lyu, Y
Madsen, J
Magnus, E
Makino, Y
Manao, E
Mancina, S
Mand, A
Mariş, I
Marka, S
Marka, Z
Marten, L
Martinez-Soler, I
Maruyama, R
Mauro, J
Mayhew, F
McNally, F
Mead, J
Meagher, K
Mechbal, S
Medina, A
Meier, M
Merckx, Y
Merten, L
Meures, T
Mitchell, J
Molchany, L
Montaruli, T
Moore, R
Morii, Y
Mosbrugger, A
Moulai, M
Mousadi, D
Moyaux, E
Mukherjee, T
Naab, R
Nakos, M
Naumann, U
Necker, J
Neste, L
Neumann, M
Niederhausen, H
Nisa, M
Noda, K
Noell, A
Novikov, A
Pollmann, A
O'Dell, V
Olivas, A
Orsoe, R
Osborn, J
O'Sullivan, E
Palusova, V
Pandya, H
Parenti, A
Park, N
Parrish, V
Paudel, E
Paul, L
de los Heros, C
Pernice, T
Peterson, J
Plum, M
Pontén, A
Poojyam, V
Popovych, Y
Rodriguez, M
Pries, B
Procter-Murphy, R
Przybylski, G
Pyras, L
Raab, C
Rack-Helleis, J
Rad, N
Ravn, M
Rawlins, K
Rechav, Z
Rehman, A
Reistroffer, I
Resconi, E
Reusch, S
Rho, C
Rhode, W
Ricca, L
Riedel, B
Rifaie, A
Roberts, E
Robertson, S
Rongen, M
Rosted, A
Rott, C
Ruhe, T
Ruohan, L
Ryckbosch, D
Saffer, J
Salazar-Gallegos, D
Sampathkumar, P
Sandrock, A
Sandstrom, P
Sanger-Johnson, G
Santander, M
Sarkar, S
Savelberg, J
Scarnera, M
Schaile, P
Schaufel, M
Schieler, H
Schindler, S
Schlickmann, L
Schlüter, B
Schlüter, F
Schmeisser, N
Schmidt, T
Schröder, F
Schumacher, L
Schunter, K
Schwirn, S
Sclafani, S
Seckel, D
Seen, L
Seikh, M
Seunarine, S
Myhr, P
Shah, R
Shefali, S
Shimizu, N
Skrzypek, B
Snihur, R
Soedingrekso, J
Søgaard, A
Soldin, D
Soldin, P
Sommani, G
Spannfellner, C
Spiczak, G
Spiering, C
Stachurska, J
Stamatikos, M
Stanev, T
Stezelberger, T
Stürwald, T
Stuttard, T
Sulanke, K
Sullivan, G
Taboada, I
Ter-Antonyan, S
Terliuk, A
Thakuri, A
Theobald, P
Thiesmeyer, M
Thompson, W
Thwaites, J
Tilav, S
Tollefson, K
Toscano, S
Tosi, D
Trevarrow, P
Trettin, A
Upadhyay, A
Upshaw, K
Vaidyanathan, A
Valtonen-Mattila, N
Valverde, J
Vandenbroucke, J
Van Eeden, T
van Eijndhoven, N
Van Rootselaar, L
van Santen, J
Vara, J
Varsi, F
Venugopal, M
Vereecken, M
Carrasco, S
Verpoest, S
Veske, D
Vijai, A
Villarreal, J
Walck, C
Wang, A
Warrick, E
Weaver, C
Weigel, P
Weindl, A
Weldert, J
Wen, A
Wendt, C
Werthebach, J
Weyrauch, M
Whitehorn, N
Wiebusch, C
Williams, D
Witthaus, L
Wolf, M
Wrede, G
Xu, X
Yanez, J
Yao, Y
Yildizci, E
Yoshida, S
Young, R
Yu, F
Yu, S
Yuan, T
Zegarelli, A
Zhang, S
Zhang, Z
Zhelnin, P
Zilberman, P
collaboration, T
Journal of Instrumentation
volume 20
issue 11
(01 Nov 2025)
A Bayesian model for sparse graphs with flexible degree distribution and overlapping community structure
Lee, J
James, L
Choi, S
Caron, F
Proceedings of Machine Learning Research
volume 89
758-767
(01 Jan 2019)