Tue, 07 May 2024

14:00 - 15:00
Online

TBA

Irit Dinur
(Weizmann Institute of Science)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Minimal design of the elephant trunk as an active filament
Goriely, A Moulton, D Kaczmarski, B Leanza, S Zhao, R Kuhl, E Physical Review Letters
Wed, 29 May 2024

17:00 - 18:30
L4

More Pope-like than the Pope: modern mathematics movement in Czechoslovakia

Helena Durnová
(Masaryk University)
Abstract
Modern mathematics movement of the early 20th century found its way into the teaching of mathematics across the world in the early post-war period, with Georges Papy and André Lichnerowicz leading the way in Europe. In Czechoslovakia, this transformation of mathematics education is known as “set-theoretical approach”. Indeed set theory is at the core of Bourbakist transformation of the mathematical knowledge, as exemplified by their masterpiece Élements de Mathématique, which became mathematicians’ manifesto. In the educational setting, the adjectives “new” and “modern” were found more appropriate, but not so in Czechoslovakia. 
 
Dirk de Bock’s recent book on the topic (Modern Mathematics: An International Movement?, Springer 2023) covers a lot of Modern Math, but Czechoslovakia is missing, and here we are. Czechoslovakia is at the heart of Europe, perhaps the heart of Europe. Hence we connect to other countries: Poland, Hungary, Soviet Union, but also Belgium, France, Sweden (marginally), the Netherlands, and Yugoslavia as a very special case.
 
This seminar reports on a joint project of Helena Durnová, Petra Bušková (Masaryk University), Danny J. Beckers (Vrije Universiteit Amsterdam), and Snezana Lawrence (Middlesex University).
Thu, 02 May 2024

11:00 - 12:00
C3

Difference fields with an additive character on the fixed field

Stefan Ludwig
(École Normale Supérieure )
Abstract

Motivated by work of Hrushovski on pseudofinite fields with an additive character we investigate the theory ACFA+ which is the model companion of the theory of difference fields with an additive character on the fixed field. Building on results by Hrushovski we can recover it as the characteristic 0-asymptotic theory of the algebraic closure of finite fields with the Frobenius-automorphism and the standard character on the fixed field. We characterise 3-amalgamation in ACFA+. As cosequences we obtain that ACFA+ is a simple theory, an explicit description of the connected component of the Kim-Pillay group and (weak) elimination of imaginaries. If time permits we present some results on higher amalgamation.

Fri, 03 May 2024
16:00
L1

Maths meets Stats

Mattia Magnabosco (Maths) and Rebecca Lewis (Stats)
Abstract

Speaker: Mattia Magnabosco (Newton Fellow, Maths)
Title: Synthetic Ricci curvature bounds in sub-Riemannian manifolds
Abstract: In Riemannian manifolds, a uniform bound on the Ricci curvature tensor allows to control the volume growth along the geodesic flow. Building upon this observation, Lott, Sturm and Villani introduced a synthetic notion of curvature-dimension bounds in the non-smooth setting of metric measure spaces. This condition, called CD(K,N), is formulated in terms of the optimal transport interpolation of measures and consists in a convexity property of the Rényi entropy functionals along Wasserstein geodesics. The CD(K,N) condition represents a lower Ricci curvature bound by K and an upper bound on the dimension by N, and it is coherent with the smooth setting, as in a Riemannian manifold it is equivalent to a lower bound on the Ricci curvature tensor. However, the same relation between curvature and CD(K,N) condition does not hold for sub-Riemannian (and sub-Finsler) manifolds. 

 

Speaker: Rebecca Lewis (Florence Nightingale Bicentenary Fellow, Stats)
Title: High-dimensional statistics
Abstract: Due to the increasing ease with which we collect and store information, modern data sets have grown in size. Whilst these datasets have the potential to yield new insights in a variety of areas, extracting useful information from them can be difficult. In this talk, we will discuss these challenges.

Fri, 26 Apr 2024
15:30
Large Lecture Theatre, Department of Statistics, University of Oxford

Inaugural Green Lecture: Tackling the hidden costs of computational science: GREENER principles for environmentally sustainable research

Dr Loïc Lannelongue, Heart and Lung Research Institute, University of Cambridge and the Cambridge-Baker Systems Genomics Initiative
(Department of Statistics, University of Oxford)
Further Information

PLEASE REGISTER FOR THE EVENT HERE: https://www.stats.ox.ac.uk/events/inaugural-green-lecture-dr-loic-lanne…

Dr Loïc Lannelongue is a Research Associate in Biomedical Data Science in the Heart and Lung Research Institute at the University of Cambridge, UK, and the Cambridge-Baker Systems Genomics Initiative. He leads the Green Algorithms project, an initiative promoting more environmentally sustainable computational science. His research interests also include radiogenomics, i.e. combining medical imaging and genetic information with machine learning to better understand and treat cardiovascular diseases. He obtained an MSc from ENSAE, the French National School of Statistics, and an MSc in Statistical Science from the University of Oxford, before doing his PhD in Health Data Science at the University of Cambridge. He is a Software Sustainability Institute Fellow, a Post-doctoral Associate at Jesus College, Cambridge, and an Associate Fellow of the Higher Education Academy.

Abstract

From genetic studies and astrophysics simulations to statistical modelling and AI, scientific computing has enabled amazing discoveries and there is no doubt it will continue to do so. However, the corresponding environmental impact is a growing concern in light of the urgency of the climate crisis, so what can we all do about it? Tackling this issue and making it easier for scientists to engage with sustainable computing is what motivated the Green Algorithms project. Through the prism of the GREENER principles for environmentally sustainable science, we will discuss what we learned along the way, how to estimate the impact of our work and what levers scientists and institutions have to make their research more sustainable. We will also debate what hurdles exist and what is still needed moving forward.

 

Subscribe to