Bounded functional calculi for unbounded operators
Batty, C Gomilko, A Tomilov, Y Operators, Semigroups, Algebras and Function Theory: Volume from IWOTA Lancaster 2021 27-60 (07 Dec 2023)
On the moments of characteristic polynomials
Jonnadula, B Keating, J Mezzadri, F Glasgow Mathematical Journal (05 Aug 2022)

As you will have read above (we hope), James Sparks will be talking about Bach's Goldberg Variations at the Spitalfields Music Festival. James says of Glenn Gould's interpretation. 

"Variations 3n+2 are all of this type (n=1,2,..,9) - two melodies, fast, one in each hand, with crossing of melodies/hands in every conceivable way you can imagine!"

On the relationship between variable Wiener index and variable Szeged index
Cambie, S Haslegrave, J Applied Mathematics and Computation volume 431 127320-127320 (01 Oct 2022)
Mon, 20 Jun 2022

12:45 - 13:45
L4

Large N Partition Functions, Holography, and Black Holes

Nikolay Bobev
Abstract

I will discuss the large N behavior of partition functions of the ABJM theory on compact Euclidean manifolds. I will pay particular attention to the S^3 free energy and the topologically twisted index for which I will present closed form expressions valid to all order in the large N expansion. These results have important implications for holography and the microscopic entropy counting of AdS_4 black holes which I will discuss. I will also briefly discuss generalizations to other SCFTs arising from M2-branes.

Agent based modeling in economics and finance: past, present, and future
Axtell, R Farmer, J Journal of Economic Literature
Mon, 27 Jun 2022 09:00 -
Fri, 22 Jul 2022 17:00
Mathematical Institute, Ground and Mezzanine levels

All we ever wanted was everything / 24.02.22 (for Ukraine)

Andy Bullock
Further Information

On June 27th, in the Reception area of the Mathematical Institute, Oxford artist Andy Bullock unveiled his most ambitious knot sculpture to date, a large floor-based work titled ‘All we ever wanted was everything / 24.02.22 (for Ukraine)’ constructed using 70 metres of metal trunking. As with all his knot sculptures they often reference issues of complexity with situations and people, the personal and interpersonal; focusing on what it means to be human.

In a first for the artist, Bullock will be inviting members of the recently arrived Ukrainian refugee community to contribute to the artwork by incorporating items of personal relevance. Bullock is reaching out to Oxfordshire’s Ukrainian community in a collaboration with Yulia Astasheva, a recent arrival herself from the Dnipropetrovsk region, where she still has close family living only miles from the Russian-occupied region.

The idea for the work came initially from a commission from Oxford Mathematics for Bullock to create an exhibition of his maths-related painting, photography and sculpture to be open to the public this summer. The core of his fine art master’s degree show last year was a creative examination and exploration of the topological subject of knot theory, and in particular the work of Clifford Hugh Dowker (1912-82) an eminent mathematician whose work is still studied today. “I find a poetic beauty in the mathematics I researched even though my understanding of the subject is virtually nil” said Bullock. “My final dissertation for my master’s degree examined the similarities in thought of mathematicians working in these areas and that of artists working in a more conceptual arena”.

In the lower ground floor space of the building there is an exhibition of some of Andy Bullock’s ‘knot variation’ paintings and photographs and a display of original handwritten manuscripts from Dowker’s personal archive alongside Andy's own sketchbooks, allowing an insight into the respective processes of mathematician and artist.

For further information:

Andy Bullock - @email - 07582 526957 - www.bullockstudio.com

Yulia Astasheva - @email

Image of Benedikt Stock giving his talk; and his slide which features David Hilbert, Yuri Matiyasevich and a cartoon of Benedikt himself.

For 4 years our DPhil (PhD) students go deep into their area of research. Then we suggest they sum it all up in 1 slide and 3 minutes.

6 of them have done just that in our 3 Minute Thesis Competition. Easy-peasy.

Subscribe to