Wound healing is a highly conserved process required for survival of an animal after tissue damage. In this Oxford Mathematics Public Lecture, Tannie will describe how we are beginning to use a combination of mathematics, physics and biology to disentangle some of the organising principles behind the complex orchestrated dynamics that lead to wound healing.
Wednesday 19 Feb 2025, 17:00, Lecture Theatre 1, Mathematical Institute, Oxford
13:00
Symmetry Operators and Gravity
Abstract
It was recently argued that topological operators (at least those associated with continuous symmetries) need regularization. However, such regularization seems to be ill-defined when the underlying QFT is coupled to gravity. If both of these claims are correct, it means that charges cannot be meaningfully measured in the presence of gravity. I will review the evidence supporting these claims as discussed in [arXiv:2411.08858]. Given the audience's high level of expertise, I hope this will spark discussion about whether this is a promising approach to understanding the fate of global symmetries in quantum gravity.
14:00
Hilbert’s 19th problem and discrete De Giorgi-Nash-Moser theory: analysis and applications
Abstract
13:00
The Penrose Inequality: An Application of Geometric PDEs to Physics
Abstract
In this talk, I will discuss a conjecture of Penrose, which asserts a lower bound on the mass of a spacetime in terms of the area of a suitable horizon. Whilst Penrose presented a physical motivation for this inequality in the 1970s, the only proofs heavily rely upon PDE arguments, and in particular the use of geometric flows. I hope to show in this talk, through this concrete example (and without unpleasant technical details!), how ideas from geometric PDE theory can be helpful in obtaining results in physics.
n-ampleness and pseudobuildings
Abstract
Translation varieties
Abstract
In algebraic geometry, the technique of dévissage reduces many questions to the case of curves. In difference and differential algebra, this is not the case, but the obstructions can be closely analysed. In difference algebra, they are difference varieties defined by equations of the form $\si(x)=g x$, determined by an action of an algebraic group and an element g of this group. This is joint work with Zoé Chatzidakis.