Fri, 06 May 2022

14:00 - 15:00
L4

Lahars and huaicos: modelling erosive flash floods

Andrew Hogg
(Bristol University)
Abstract

Lahars and huaicos are potent natural hazards that threaten lives and livelihoods. They comprise debris-laden fluid that flows rapidly down slopes, bulking up considerably as they progress. Owing to their rapid onset and the significant threat that they pose to communities and infrastructures, it is important to be able to predict their motion in order to assess quantitatively some of the impacts that they may cause. In this seminar I will present mathematical models of these flows and apply them to various natural settings, drawing on examples from Peru and the Philippines.  Along the way I will show some informative, idealised solutions, the susceptibility of these flows to roll wave instabilities, ways to prevent ill-posedness and how to include measured topography in the computation.

Fri, 11 Mar 2022

14:00 - 15:00
Virtual

Glacial reshaping of the Earth surface: From geological observations to modeling

Anders Damsgaard
(Aarhus University)
Abstract

The presence of glaciers and ice sheets leaves a significant imprint
on Earth's surface.  We steadily improve our physical understanding of
the involved processes, from the erosion of kilometer-deep fjords in
crystalline bedrock to the broad ice-marginal deposition of sediments.
This talk will highlight observations of landforms, sedimentary deposits,
laboratory experiments, and models that aim to capture the interplay
between ice and substratum.  I show how the interplay may play a role in
the future evolution of the West Antarctic Ice Sheet in a warming climate.

Mon, 07 Mar 2022
13:00
L2

Symmetry-enriched quantum criticality

Nick Jones
(Oxford)
Abstract

I will review aspects of the theory of symmetry-protected topological phases, focusing on the case of one-dimensional quantum chains. Important concepts include the bulk-boundary correspondence, with bulk topological invariants leading to interesting boundary phenomena. I will discuss topological invariants and associated boundary phenomena in the case that the system is gapless and described at low energies by a conformal field theory. Based on work with Ruben Verresen, Ryan Thorngren and Frank Pollmann.

Tue, 03 May 2022

14:00 - 14:30
L3

Permutation compressors for provably faster distributed nonconvex optimization

Rafal Szlendak
(University of Warwick)
Abstract
In this talk, we are going to explore our recent paper that builds upon MARINA -- the current state-of-the-art distributed non-convex optimization method in terms of theoretical communication complexity. Theoretical superiority of this method can be largely attributed to two sources: the use of a carefully engineered biased stochastic gradient estimator, which leads to a reduction in the number of communication rounds, and the reliance on independent stochastic communication compression operators, which leads to a reduction in the number of transmitted bits within each communication round. In this paper we
 
i) extend the theory of MARINA to support a much wider class of potentially correlated compressors, extending the reach of the method beyond the classical independent compressors setting,  
 
ii) show that a new quantity, for which we coin the name Hessian variance, allows us to significantly refine the original analysis of MARINA without any additional assumptions, and 
 

iii) identify a special class of correlated compressors based on the idea of random permutations, for which we coin the term PermK. The use of this technique results in the strict improvement on the previous MARINA rate. In the low Hessian variance regime, the improvement can be as large as √n, when d > n, and 1 + √d/n, when n<=d, where n is the number of workers and d is the number of parameters describing the model we are learning.

Density of GeV muons in air showers measured with IceTop
Abbasi, R Ackermann, M Adams, J Aguilar, J Ahlers, M Ahrens, M Alameddine, J Alves, A Amin, N Andeen, K Anderson, T Anton, G Argüelles, C Ashida, Y Axani, S Bai, X V., A Barwick, S Bastian, B Basu, V Baur, S Bay, R Beatty, J Becker, K Tjus, J Beise, J Bellenghi, C Benda, S BenZvi, S Berley, D Bernardini, E Besson, D Binder, G Bindig, D Blaufuss, E Blot, S Boddenberg, M Bontempo, F Borowka, J Böser, S Botner, O Böttcher, J Bourbeau, E Bradascio, F Braun, J Brinson, B Bron, S Brostean-Kaiser, J Browne, S Burgman, A Burley, R Busse, R Campana, M Carnie-Bronca, E Chen, C Chen, Z Chirkin, D Choi, K Clark, B Clark, K Classen, L Coleman, A Collin, G Conrad, J Coppin, P Correa, P Cowen, D Cross, R Dappen, C Dave, P De Clercq, C DeLaunay, J López, D Dembinski, H Deoskar, K Desai, A Desiati, P de Vries, K de Wasseige, G de With, M DeYoung, T Diaz, A Díaz-Vélez, J Dittmer, M Dujmovic, H Dunkman, M DuVernois, M Ehrhardt, T Eller, P Engel, R Erpenbeck, H Evans, J Evenson, P Fan, K Fazely, A Fedynitch, A Feigl, N Fiedlschuster, S Fienberg, A Finley, C Fischer, L Fox, D Franckowiak, A Friedman, E Fritz, A Fürst, P Gaisser, T Gallagher, J Ganster, E Garcia, A Garrappa, S Gerhardt, L Ghadimi, A Glaser, C Glauch, T Glüsenkamp, T Gonzalez, J Goswami, S Grant, D Grégoire, T Griswold, S Günther, C Gutjahr, P Haack, C Hallgren, A Halliday, R Halve, L Halzen, F Minh, M Hanson, K Hardin, J Harnisch, A Haungs, A Hebecker, D Helbing, K Henningsen, F Hettinger, E Hickford, S Hignight, J Hill, C Hill, G Hoffman, K Hoffmann, R Hoshina, K Huang, F Huber, M Huber, T Hultqvist, K Hünnefeld, M Hussain, R Hymon, K In, S Iovine, N Ishihara, A Jansson, M Japaridze, G Jeong, M Jin, M Jones, B Kang, D Kang, W Kang, X Kappes, A Kappesser, D Kardum, L Karg, T Karl, M Karle, A Katz, U Kauer, M Kellermann, M Kelley, J Kheirandish, A Kin, K Kintscher, T Kiryluk, J Klein, S Koirala, R Kolanoski, H Kontrimas, T Köpke, L Kopper, C Kopper, S Koskinen, D Koundal, P Kovacevich, M Kowalski, M Kozynets, T Kun, E Kurahashi, N Lad, N Gualda, C Lanfranchi, J Larson, M Lauber, F Lazar, J Lee, J Leonard, K Leszczyńska, A Li, Y Lincetto, M Liu, Q Liubarska, M Lohfink, E Mariscal, C Lu, L Lucarelli, F Ludwig, A Luszczak, W Lyu, Y Ma, W Madsen, J Mahn, K Makino, Y Mancina, S Mari{ş}, I Martinez-Soler, I Maruyama, R McCarthy, S McElroy, T McNally, F Mead, J Meagher, K Mechbal, S Medina, A Meier, M Meighen-Berger, S Micallef, J Mockler, D Montaruli, T Moore, R Morse, R Moulai, M Naab, R Nagai, R Naumann, U Necker, J Nguy{\~{ê}}n, L Niederhausen, H Nisa, M Nowicki, S Pollmann, A Oehler, M Oeyen, B Olivas, A O'Sullivan, E Pandya, H Pankova, D Park, N Parker, G Paudel, E Paul, L Heros, C Peters, L Peterson, J Philippen, S Pieper, S Pittermann, M Pizzuto, A Plum, M Popovych, Y Porcelli, A Rodriguez, M Pries, B Przybylski, G Raab, C Rack-Helleis, J Raissi, A Rameez, M Rawlins, K Rea, I Rechav, Z Rehman, A Reichherzer, P Reimann, R Renzi, G Resconi, E Reusch, S Rhode, W Richman, M Riedel, B Roberts, E Robertson, S Roellinghoff, G Rongen, M Rott, C Ruhe, T Ryckbosch, D Cantu, D Safa, I Saffer, J Herrera, S Sandrock, A Santander, M Sarkar, S Satalecka, K Schaufel, M Schieler, H Schindler, S Schmidt, T Schneider, A Schneider, J Schröder, F Schumacher, L Schwefer, G Sclafani, S Seckel, D Seunarine, S Sharma, A Shefali, S Shimizu, N Silva, M Skrzypek, B Smithers, B Snihur, R Soedingrekso, J Soldin, D Spannfellner, C Spiczak, G Spiering, C Stachurska, J Stamatikos, M Stanev, T Stein, R Stettner, J Stezelberger, T Stürwald, T Stuttard, T Sullivan, G Taboada, I Ter-Antonyan, S Thwaites, J Tilav, S Tischbein, F Tollefson, K Tönnis, C Toscano, S Tosi, D Trettin, A Tselengidou, M Tung, C Turcati, A Turcotte, R Turley, C Twagirayezu, J Ty, B Elorrieta, M Valtonen-Mattila, N Vandenbroucke, J van Eijndhoven, N Vannerom, D van Santen, J Veitch-Michaelis, J Verpoest, S Walck, C Wang, W Watson, T Weaver, C Weigel, P Weindl, A Weiss, M Weldert, J Wendt, C Werthebach, J Weyrauch, M Whitehorn, N Wiebusch, C Williams, D Wolf, M Wrede, G Wulff, J Xu, X Yanez, J Yildizci, E Yoshida, S Yu, S Yuan, T Zhang, Z Zhelnin, P (29 Jan 2022)
Mon, 21 Feb 2022

15:30 - 16:30
L3

The Wasserstein space of stochastic processes & computational aspects.

GUDMUND PAMMER
(ETH Zurich)
Abstract

Wasserstein distance induces a natural Riemannian structure for the probabilities on the Euclidean space. This insight of classical transport theory is fundamental for tremendous applications in various fields of pure and applied mathematics. We believe that an appropriate probabilistic variant, the adapted Wasserstein distance $AW$, can play a similar role for the class $FP$ of filtered processes, i.e. stochastic processes together with a filtration. In contrast to other topologies for stochastic processes, probabilistic operations such as the Doob-decomposition, optimal stopping and stochastic control are continuous w.r.t. $AW$. We also show that $(FP, AW)$ is a geodesic space, isometric to a classical Wasserstein space, and that martingales form a closed geodesically convex subspace. Finally we consider computational aspects and provide a novel method based on the Sinkhorn algorithm.

The talk is based on articles with Daniel Bartl, Mathias Beiglböck and Stephan Eckstein.

Mon, 07 Mar 2022
14:15
L5

Brakke Regularity for the Allen--Cahn Flow

Huy The Nguyen
(Queen Mary University, London)
Further Information

The talk will be both online (Teams) and in person (L5)

Abstract

In this talk we prove an analogue of the Brakke's $\epsilon$-regularity theorem for the parabolic Allen--Cahn equation. In particular, we show uniform $C^{2,\alpha}$ regularity for the transition layers converging to smooth mean curvature flows as $\epsilon\rightarrow 0$. A corresponding gap theorem for entire eternal solutions of the parabolic Allen--Cahn is also obtained. As an application of the regularity theorem, we give an affirmative answer to a question of Ilmanen that there is no cancellation in BV convergence in the mean convex setting.

Subscribe to