Fri, 03 Dec 2021
16:00
N4.01

G2 instantons in twisted M-theory

Jihwan Oh
(Oxford)
Further Information

It is also possible to join online via Zoom.

Abstract

Computing Donaldson-Thomas partition function of a G2 manifold has been a long standing problem. The key step for the problem is to understand the G2 instanton moduli space. I will discuss a string theory way to study the G2 instanton moduli space and explain how to compute the instanton partition function for a certain G2 manifold. An important insight comes from the twisted M-theory on the G2 manifold. This talk is based on a work with Michele del Zotto and Yehao Zhou.

Charge transport modelling of Lithium-ion batteries
RICHARDSON, G FOSTER, J RANOM, R PLEASE, C RAMOS, A European Journal of Applied Mathematics volume 33 issue 6 983-1031 (21 Dec 2022)
Tue, 30 Nov 2021
14:00
L6

The n-queens problem

Candy Bowtell
(Oxford/Birmingham)
Abstract

The $n$-queens problem asks how many ways there are to place $n$ queens on an $n \times n$ chessboard so that no two queens can attack one another, and the toroidal $n$-queens problem asks the same question where the board is considered on the surface of a torus. Let $Q(n)$ denote the number of $n$-queens configurations on the classical board and $T(n)$ the number of toroidal $n$-queens configurations. The toroidal problem was first studied in 1918 by Pólya who showed that $T(n)>0$ if and only if $n \equiv 1,5 \mod 6$. Much more recently Luria showed that $T(n)\leq ((1+o(1))ne^{-3})^n$ and conjectured equality when $n \equiv 1,5 \mod 6$. We prove this conjecture, prior to which no non-trivial lower bounds were known to hold for all (sufficiently large) $n \equiv 1,5 \mod 6$. We also show that $Q(n)\geq((1+o(1))ne^{-3})^n$ for all $n \in \mathbb{N}$ which was independently proved by Luria and Simkin and, combined with our toroidal result, completely settles a conjecture of Rivin, Vardi and Zimmerman regarding both $Q(n)$ and $T(n)$. 

In this talk we'll discuss our methods used to prove these results. A crucial element of this is translating the problem to one of counting matchings in a $4$-partite $4$-uniform hypergraph. Our strategy combines a random greedy algorithm to count `almost' configurations with a complex absorbing strategy that uses ideas from the methods of randomised algebraic construction and iterative absorption.

This is joint work with Peter Keevash.

Tue, 16 Nov 2021

16:00 - 17:00
C5

On C*-Rigidity for a Certain Class of Bieberbach Groups

Mat Antrobus, Dan Claydon, Jakub Curda, Jossy Russell
Abstract

Here we present the findings of our summer research project: an 8-week investigation of C*-Algebras. Our aim was to explore when a group is uniquely determined by its reduced group C*-algebra; i.e. when the group is C*-rigid. In particular, we applied techniques from topology, algebra, and analysis to prove C*-rigidity for a certain class of Bieberbach groups.

Mon, 29 Nov 2021

16:00 - 17:00
L3

Critical exponents for a three-dimensional percolation model 

PIERRE-FRANCOIS RODRIGUEZ
((Imperial College, London))
Abstract

We will report on recent progress regarding the near-critical behavior of certain statistical physics models in dimension 3. Our results deal with the second-order phase transition associated to two percolation problems involving the Gaussian free field in 3D. In one case, they determine a unique ``fixed point'' corresponding to the transition, which is proved to obey one of several scaling relations. Such laws are classically conjectured to hold by physicists on the grounds of a corresponding scaling ansatz. 

 

PROMYS Europe Connect 2021 saw a group of enthusiastic and high-achieving young mathematicians gather (online) in July and August for a four-week intensive summer programme designed to give them the experience of thinking deeply about mathematics in a community of similarly mathematically excited students and staff. In other circumstances, PROMYS Europe is a six-week residential programme in Oxford, organised by a partnership of PROMYS (Boston), Wadham College and the Mathematical Institute at the University of Oxford, and the Clay Mathematics Institute.

Thu, 02 Dec 2021

11:30 - 12:45
C2

Existential rank and essential dimension of definable sets

Philip Dittmann
(TU Dresden)
Abstract

Several natural measures of complexity can be attached to an
existentially definable ("diophantine") subset of a field. One of these
is the minimal number of existential quantifiers required to define it,
while others are of a more geometric nature. I shall define these
measures and discuss interesting interactions and behaviours, some of
which depend on properties of the field (e.g. imperfection and
ampleness). We shall see for instance that the set of n-tuples of field
elements consisting of n squares is usually definable with a single
quantifier, but not always. I will also discuss connections with
Hilbert's 10th Problem and a number of open questions.
This is joint work with Nicolas Daans and Arno Fehm.

Mon, 21 Feb 2022
14:15
L5

Anti-self-dual instantons and codimension-1 collapse

Lorenzo Foscolo
(University College London)
Further Information

The talk will be both online (Teams) and in person (L5)

Abstract

We study the behaviour of anti-self-dual instantons on $\mathbb{R}^3 \times S^1$ (also known as calorons) under codimension-1 collapse, i.e. when the circle factor shrinks to zero length. In this limit, the instanton equation reduces to the well-known Bogomolny equation of magnetic monopoles on $\mathbb{R}^3 $. However, inspired by work of Kraan and van Baal in the mathematical physics literature, we show how $SU(2)$ instantons can be realised as superpositions of monopoles and "rotated monopoles" glued into a singular background abelian configuration consisting of Dirac monopoles of positive and negative charges. I will also discuss generalisations of the construction to calorons with arbitrary structure group and potential applications to the hyperkähler geometry of moduli spaces of calorons. This is joint work with Calum Ross.

Mon, 15 Nov 2021

16:00 - 17:00

Measuring association with Wasserstein distances

JOHANNES C W WIESEL
(Columbia University (New York))
Abstract

 

Title: Measuring association with Wasserstein distances

Abstract: Let π ∈ Π(μ, ν) be a coupling between two probability measures μ and ν on a Polish space. In this talk we propose and study a class of nonparametric measures of association between μ and ν, which we call Wasserstein correlation coefficients. These coefficients are based on the Wasserstein distance between ν and the disintegration of π with respect to the first coordinate. We also establish basic statistical properties of this new class of measures: we develop a statistical theory for strongly consistent estimators and determine their convergence rate in the case of compactly supported measures μ and ν. Throughout our analysis we make use of the so-called adapted/bicausal Wasserstein distance, in particular we rely on results established in [Backhoff, Bartl, Beiglböck, Wiesel. Estimating processes in adapted Wasserstein distance. 2020]. Our approach applies to probability laws on general Polish spaces.

Wed, 17 Nov 2021

14:00 - 15:00
L5

Symplectic duality, 3d mirror symmetry, and the Coulomb branch construction of Braverman-Finkelberg-Nakajima

Dylan Butson
Abstract

I'll explain 'symplectic duality', a surprising relationship between certain pairs of algebraic symplectic manifolds, under which Hamiltonian automorphisms of one are identified with Poisson deformations of the other, and which is ultimately characterized by a Koszul-type equivalence between categories of modules over their filtered quantizations. I'll outline why such relationships are expected from physics in terms of three dimensional mirror symmetry, and rediscover the Coulomb branch construction of Braverman-Finkelberg-Nakajima from this perspective. We'll see that this explicitly constructs the symplectic dual of any variety which is presented as the symplectic reduction of a vector space by a reductive group.
 

Subscribe to