Mon, 22 Nov 2021
13:00
L2

M-theory, enumerative geometry, and representation theory of affine Lie algebras

Dylan Butson
((Oxford University))
Further Information

Note unusual time (1pm) and room (L2)

Abstract

 I will review some well-established relationships between four manifolds and vertex algebras that can be deduced from studying the M5-brane worldvolume theory, and outline some of the corresponding results in mathematics which have been understood so far. I will then describe a proposal of Gaiotto-Rapcak to generalize these ideas to the setting of multiple M5 branes wrapping divisors in toric Calabi-Yau threefolds, and explain work in progress on understanding the mathematical implications of this proposal as a complex network of relationships between the enumerative geometry of sheaves on threefolds and the representation theory of affine Lie algebras.

Tue, 26 Oct 2021
16:30
L5

String-like amplitudes for surfaces beyond the disk

Hugh Thomas
(UQÀM)
Abstract
In 1969, Koba and Nielsen found some equations (now known as u-equations or non-crossing equations) whose solutions can be described as cross-ratios of n points on a line. The tree string amplitude, or generalized Veneziano amplitude,  can be defined as an integral over the non-negative solutions to the u-equations. This is a function of the Mandelstam variables and has interesting properties: it does not diverge as the Mandelstam variables get large, and it exhibits factorization when one of the variables approaches zero. One should think of these functions as being associated to the disk with marked points on the boundary. I will report on ongoing work with Nima Arkani-Hamed, Hadleigh Frost, Pierre-Guy Plamondon, and Giulio Salvatori, in which we replace the disk by other oriented surfaces. I will emphasize the part of our approach which is based on representations of gentle algebras, which arise from a triangulation of the surface.

 

Wed, 27 Oct 2021

14:00 - 15:00
L5

Calabi-Yau Modularity and Black Holes

Pyry Kuusela
Abstract

One of the consequences of Wiles' proof of Fermat's Last Theorem is that elliptic curves over rational numbers can be associated with modular forms, whose Fourier coefficients essentially count points on the curve. Generalisation of this modularity to higher dimensional varieties is a very interesting open question. In this talk I will give a physicist's view of Calabi-Yau modularity. Starting with a very simplified overview of some number theoretic background related to the Langlands program, I relate some of this theory to black holes in IIB/A string theories compactified on Calabi-Yau threefolds. It is possible to associate modular forms to certain such black holes. We can then ask whether these modular forms have a physical interpretation as, for example, counting black hole microstates. In an attempt to answer this question, we derive a formula for fully instanton-corrected black hole entropy, which gives an interesting hint of this counting. The talk is partially based on recent work arXiv:2104.02718 with P. Candelas and J. McGovern.

Thu, 04 Nov 2021

16:00 - 17:00
L3

Blow-up in the supercooled Stefan problem with noise: unstable states and discontinuity of the temperature

ANDREAS SOJMARK
(University of Oxford)
Abstract

Following on from Christoph's talk last week, I will present a version of the supercooled Stefan problem with noise. I will start by discussing the physical intuition and then give a probabilistic representation of solutions. From there, I will identify a simple relationship between the initial heat profile and a single parameter for how the liquid solidifies, which, if violated, forces the temperature to develop a discontinuity in finite time with positive probability. On the other hand, when the relationship is satisfied, the temperature remains globally continuous with probability one. The work is part of a new preprint that should soon be available on arXiv.

 

Tue, 02 Nov 2021
15:30
L5

Celestial holography, twisted holography, and twistors

Kevin Costello
(Perimeter Institute)
Abstract

I'll argue that the celestial holography program looks a lot like the twisted holography program when studied on twistor space.  The chiral algebras in celestial holography can be seen by applying techniques such as Koszul duality to holomorphic theories on twistor space. Along the way, I will discuss the role of one-loop gauge anomalies on twistor space and when they can be cancelled by a Green-Schwarz mechanism.   This is joint work in progress with Natalie Paquette.

The speaker will be on zoom, but for a more interactive experience, some of the audience will watch the seminar in L5.

 

Thu, 25 Nov 2021

16:00 - 17:00
L3

TBC

BEN HAMBLY
(University of Oxford)
Abstract

TBC

Thu, 11 Nov 2021

16:00 - 17:00
L3

Online Stochastic Optimization of SDEs

JUSTIN SIRIGNANO
(University of Oxford)
Abstract

We develop a new online algorithm for optimizing over the stationary distribution of stochastic differential equation (SDE) models. The algorithm optimizes over the parameters in the multi-dimensional SDE model in order to minimize the distance between the model's stationary distribution and the target statistics. We rigorously prove convergence for linear SDE models and present numerical results for nonlinear examples. The proof requires analysis of the fluctuations of the parameter evolution around the unbiased descent direction under the stationary distribution. Bounds on the fluctuations are challenging to obtain due to the online nature of the algorithm (e.g., the stationary distribution will continuously change as the parameters change). We prove bounds on a new class of Poisson partial differential equations, which are then used to analyze the parameter fluctuations in the algorithm. This presentation is based upon research with Ziheng Wang.
 

Subscribe to