12:45
Kondo line defect and affine oper/Gaudin correspondence
Abstract
It is well-known that the spectral data of the Gaudin model associated to a finite semisimple Lie algebra is encoded by the differential data of certain flat connections associated to the Langlands dual Lie algebra on the projective line with regular singularities, known as oper/Gaudin correspondence. Recently, some progress has been made in understanding the correspondence associated with affine Lie algebras. I will present a physical perspective from Kondo line defects, physically describing a local impurity chirally coupled to the bulk 2d conformal field theory. The Kondo line defects exhibit interesting integrability properties and wall-crossing behaviors, which are encoded by the generalized monodromy data of affine opers. In the physics literature, this reproduces the known ODE/IM correspondence. I will explain how the recently proposed 4d Chern Simons theory provides a new perspective which suggests the possibility of a physicists’ proof.
13:00
TBA
NOTE UNUSUAL TIME: 1pm
Abstract
In this talk I will discuss an algorithm to piecewise dualise linear quivers into their mirror duals. This applies to the 3d N=4 version of mirror symmetry as well as its recently introduced 4d counterpart, which I will review. The algorithm uses two basic duality moves, which mimic the local S-duality of the 5-branes in the brane set-up of the 3d theories, and the properties of the S-wall. The S-wall is known to correspond to the N=4 T[SU(N)] theory in 3d and I will argue that its 4d avatar corresponds to an N=1 theory called E[USp(2N)], which flows to T[SU(N)] in a suitable 3d limit. All the basic duality moves and S-wall properties needed in the algorithm are derived in terms of some more fundamental Seiberg-like duality, which is the Intriligator--Pouliot duality in 4d and the Aharony duality in 3d.
Symmetry breaking and pattern formation for local/nonlocal interaction functionals
Abstract
In this talk I will review some recent results obtained in collaboration with E. Runa and A. Kerschbaum on the one-dimensionality of the minimizers
of a family of continuous local/nonlocal interaction functionals in general dimension. Such functionals have a local term, typically the perimeter or its Modica-Mortola approximation, which penalizes interfaces, and a nonlocal term favouring oscillations which are high in frequency and in amplitude. The competition between the two terms is expected by experiments and simulations to give rise to periodic patterns at equilibrium. Functionals of this type are used to model pattern formation, either in material science or in biology. The difficulty in proving the emergence of such structures is due to the fact that the functionals are symmetric with respect to permutation of coordinates, while in more than one space dimensions minimizers are one-dimesnional, thus losing the symmetry property of the functionals. We will present new techniques and results showing that for two classes of functionals (used to model generalized anti-ferromagnetic systems, respectively colloidal suspensions), both in sharp interface and in diffuse interface models, minimizers are one-dimensional and periodic, in general dimension and also while imposing a nontrivial volume constraint.
Oxford Mathematicians Coralia Cartis, Samuel Cohen, Renaud Lambiotte and Terry Lyons have been made Fellows of the Alan Turing Institute, the UK’s national institute for data science and AI.
Gromov-Witten invariants of blow-ups
Abstract
The Mirror Clemens-Schmid Sequence
Abstract
I will present a four-term exact sequence relating the cohomology of a fibration to the cohomology of an open set obtained by removing the preimage of a general linear section of the base. This exact sequence respects three filtrations, the Hodge, weight, and perverse Leray filtrations, so that it is an exact sequence of mixed
Hodge structures on the graded pieces of the perverse Leray filtration. I claim that this sequence should be thought of as a mirror to the Clemens-Schmid sequence describing the structure of a degeneration and formulate a "mirror P=W" conjecture relating the filtrations on each side. Finally, I will present evidence for this conjecture coming from the K3 surface setting. This is joint work with Charles F. Doran.