Skip to main content
University of Oxford logo Home

Search form

  • Log in
  • Members
  • About Us
    • Contact Us
    • Travel & Maps
    • Our Building
    • Supporting Mathematics
    • Alumni
    • History
    • Art and Oxford Mathematics
    • News
    • Vacancies
    • Equality, Diversity & Inclusion
  • Study Here
    • Undergraduate Study
    • Postgraduate Study
    • Current Students
  • Research
    • Research Groups
    • Case studies
    • Faculty Books
  • Outreach
    • Posters
    • Oxford Mathematics Alphabet
    • Oxford Online Maths Club
    • It All Adds Up
    • Problem Solving Matters
    • PROMYS Europe
    • Oxfordshire Maths Masterclasses
    • Maths Week England
    • Outreach Information
    • Mailing List
  • People
    • Key Contacts
    • University People Search
    • People list
    • A Global Department
    • Research Fellowship Programmes
    • Professional Services Teams
  • Events
    • Conference Facilities
    • Public Lectures & Events
    • Departmental Seminars & Events
    • Special Lectures
    • Conferences
    • Summer Schools
    • Past Events
    • Alumni newsletters
    • Info for event organisers and attendees

Primary tabs

  • View(active tab)
  • Contact

Prof. J S Wilson

M.A., Sc.D. (Cantab.), L.R.A.M.
Status
Emeritus

Emeritus Professor of Mathematics, University of Oxford

Contact form
http://people.maths.ox.ac.uk/wilsonjs/
+44 1865 273536
Research groups
  • Algebra

Address
Mathematical Institute
University of Oxford
Andrew Wiles Building
Radcliffe Observatory Quarter
Woodstock Road
Oxford
OX2 6GG

Recent publications
ON THE LINEARITY OF TORSION-FREE NILPOTENT GROUPS OF FINITE MORLEY RANK
Altinel, T Wilson, J PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY volume 137 issue 5 1813-1821 (2009) http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000263532700034&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=4fd6f7d59a501f9b8bac2be37914c43e
The probability of generating a nilpotent subgroup of a finite group
Wilson, J BULLETIN OF THE LONDON MATHEMATICAL SOCIETY volume 40 568-580 (Aug 2008) http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000257787000002&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=4fd6f7d59a501f9b8bac2be37914c43e
The probability of generating a soluble subgroup of a finite group
Wilson, J JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES volume 75 431-446 (Apr 2007) http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000248398200011&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=4fd6f7d59a501f9b8bac2be37914c43e
Finite axiomatization of finite soluble groups
Wilson, J Journal of the London Mathematical Society volume 74 issue 3 566-582 (Dec 2006)
A Characterization of finite soluble groups by laws in two variables
Bray, J Wilson, J Wilson, R BULLETIN OF THE LONDON MATHEMATICAL SOCIETY volume 37 179-186 (Apr 2005) http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000228614100003&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=4fd6f7d59a501f9b8bac2be37914c43e
Research interests

profinite groups, finite and infinite soluble groups, model theory of groups, branch groups, word growth of groups, finitely presented groups, generation problems for finite simple groups.

 

Preferred address
Mathematical Institute
Major / recent publications

Profinite groups.  London Math. Soc. Monographs, New Series 19 (Clarendon Press, Oxford, 1998).

(with R.M. Guralnick)  On the probability of generating a finite soluble group.  Proc. London Math. Soc. (3) 81 (2000), 405-427.

(with R.I. Grigorchuk)  A structural property concerning abstract commensurability of subgroups.  J. London Math. Soc.  (2) 68 (2003), 671-682.

On exponential growth and uniformly exponential growth for groups.  Invent. Math. 155 (2004), 287-303.

On growth of groups with few relators.  Bull. London Math. Soc.  36 (2004), 1-2.

(with J.N. Bray and R.A. Wilson)  A characterization of finite soluble groups by laws in two variables.  Bull. London Math. Soc. 37 (2005), 179-186.

Finite axiomatization of finite soluble groups.  J. London Math. Soc. (2) 74 (2006), 566-582.

Structure theory for branch groups. In Geometric and Homological Topics in Group Theory (Cambridge University Press, 2009), 306-320.

First-order characterization of the radical of a finite group.  J. Symbolic Logic 74 (2009), 1429-1435.

Large hereditarily just infinite groups. J. Algebra 324 (2010),  248-255.

Characterization of the soluble radical by a sequence of words.  J. Algebra 326 (2011), 286-289.

Finite index subgroups and verbal subgroups in profinite groups.  Astérisque  339 (2011), 387-408.

The gap in the growth of residually soluble groups.  Bull. London Math. Soc.  43 (2011), 576-582.

(with J.R.J. Groves) Soluble groups with a finiteness condition arising from Bredon cohomology.   Bull. London Math. Soc.  45 (2013), 89-92.

(with A. Garrido)  On subgroups of finite index in branch groups.   J. Algebra  397 (2014), 32-38.

(with A. Thom)  Metric ultraproducts of finite simple groups.  C. R. Math. Acad. Sci. Paris  352 (2014),  463-466.

(with I.M. Chiswell and A.M.W. Glass)  Residual nilpotence and ordering in one-relator groups and knot groups.  Math. Proc. Cambridge Philos. Soc.  158 (2015), 275-288.

The first-order theory of  branch groups.  J. Austral. Math. Soc. 102 (2017), 150-158.

(with A.M.W. Glass) Recognising the real line.  To appear.


Popular article.  The glass bead game.  Math. Intelligencer 19 (1997), no. 2, 23--25.

Oxford Mathematics Twitter
Oxford Mathematics Facebook
Oxford Mathematics Instangram
Oxford Mathematics Youtube

© Mathematical Institute
Website Accessibility Statement
Website Privacy Policy & Cookies Statement

Good practice scheme
Athena SWAN silver award
Stonewall workplace equality
sfy39587stp18