Tue, 29 Apr 2025
16:00
L6

Thick points of the planar Gaussian free field 

Ellen Powell
(Durham University)
Abstract
The Gaussian Free Field (GFF) in two dimensions is a random field which can be viewed as a multidimensional analogue of Brownian motion, and appears as a universal scaling limit of a class of discrete height functions. Thick points of the GFF are points where, roughly speaking, the field is atypically high. They provide key insights into the geometric properties of the field, and are the basis for construction of important associated objects in random planar geometry. The set of thick points with thickness level a is a fractal set with Hausdorff dimension 2-a^2/2. In this talk I will discuss another fundamental property, namely, that the set is almost surely disconnected for all non-zero a. This is based on joint work with Juhan Aru and Léonie Papon, and uses a remarkable relationship between the GFF and the "conformal loop ensemble" of parameter 4. 
Fri, 07 Mar 2025
12:00
L5

A general hierarchy of charges for sub-leading soft theorems at all orders

Giorgio Pizzolo
(Durham University)
Abstract
The deep connection between the soft limits of scattering amplitudes and asymptotic symmetries relies on the construction of a well-defined phase space at null infinity, which can be set up perturbatively via an expansion in the soft particle energy. At leading order, this result has by now been established.
In this talk, I will present a new general procedure for constructing the extended phase space for Yang-Mills theory, based on the Stueckelberg mechanism, that is capable of handling the asymptotic symmetries and construction of charges responsible for sub-leading soft theorems at all orders. The generality of the procedure allows it to be directly applied to the computation of both three- and loop-level soft limits. Based on [2407.13556] and [2405.06629], with Silvia Nagy and Javier Peraza.
Tue, 11 Mar 2025
16:00
L6

On non-Gaussian multiplicative chaos

Mo Dick Wong
(Durham University)
Abstract

We consider two approximation schemes for the construction of a class of non-Gaussian multiplicative chaos, and show that they give rise to the same limit in the entire subcritical regime. Our approach uses a modified second moment method with the help of a new coupling argument, and does not rely on any Gaussian approximation or thick point analysis. As an application, we extend the martingale central limit theorem for partial sums of random multiplicative functions to L^1 twists. This is a joint work with Ofir Gorodetsky.

Mon, 23 Oct 2023
15:30
L4

Khovanov homology and the Fukaya category of the three-punctured sphere

Claudius Zibrowius
(Durham University)
Abstract

About 20 years ago, Dror Bar-Natan described an elegant generalisation
of Khovanov homology to tangles with any number of endpoints, by
considering certain quotients of two-dimensional relative cobordism
categories.  I claim that these categories are in general not
well-understood (not by me in any case).  However, if we restrict to
tangles with four endpoints, things simplify and Bar-Natan's category
turns out to be closely related to the wrapped Fukaya category of the
four-punctured sphere.  This relationship gives rise to a symplectic
interpretation of Khovanov homology that is useful both for doing
calculations and for proving theorems.  I will discuss joint work in
progress with Artem Kotelskiy and Liam Watson where we investigate what
happens when we fill in one of the punctures.
 

Mon, 27 Feb 2023
15:30
L4

SL(2,C)-character varieties of knots and maps of degree 1

Raphael Zentner
(Durham University)
Abstract

We ask to what extend the SL(2,C)-character variety of the
fundamental group of the complement of a knot in S^3 determines the
knot. Our methods use results from group theory, classical 3-manifold
topology, but also geometric input in two ways: the geometrisation
theorem for 3-manifolds, and instanton gauge theory. In particular this
is connected to SU(2)-character varieties of two-component links, a
topic where much less is known than in the case of knots. This is joint
work with Michel Boileau, Teruaki Kitano, and Steven Sivek.

Tue, 22 Nov 2022

15:30 - 16:30
L6

Domino Shuffle and Matrix Refactorizations

Sunil Chhita
(Durham University)
Abstract

This talk is motivated by computing correlations for domino tilings of the Aztec diamond.  It is inspired by two of the three distinct methods that have recently been used in the simplest case of a doubly periodic weighting, that is the two-periodic Aztec diamond. This model is of particular probabilistic interest due to being one of the few models having a boundary between polynomially and exponentially decaying macroscopic regions in the limit. One of the methods to compute correlations, powered by the domino shuffle, involves inverting the Kasteleyn matrix giving correlations through the local statistics formula. Another of the methods, driven by a Wiener-Hopf factorization for two- by-two matrix valued functions, involves the Eynard-Mehta theorem. For arbitrary weights the Wiener-Hopf factorization can be replaced by an LU- and UL-decomposition, based on a matrix refactorization, for the product of the transition matrices. In this talk, we present results to say that the evolution of the face weights under the domino shuffle and the matrix refactorization is the same. This is based on joint work with Maurice Duits (Royal Institute of Technology KTH).  

 

Thu, 20 Oct 2022

12:00 - 13:00
L1

Revisiting Two Classic Surface Tension Problems: Rough Capillary Rise and Fluctuations of Cellular Droplets

Prof. Halim Kusumaatmaja
(Durham University)
Further Information

Prof Halim Kusumaatmaja is currently a Professor of Physics at Durham University and he also holds an EPSRC Fellowship in Engineering. Prof Kusumaatmaja graduated with a Master of Physics from the University of Leicester in 2004 and a PhD in Physics from the University of Oxford in 2008. He worked as a Postdoctoral Research Associate at the Max Planck Institute of Colloids and Interfaces (2008-2011) and at the University of Cambridge (2011-2013), before moving to Durham University and rising through the ranks from Assistant Professor (2013-2017) to Associate Professor (2017-2020) and Full Professor (2020-now). Prof Kusumaatmaja leads an interdisciplinary research group in the area of Soft Matter and Biophysics. Current research interests include wetting and interfacial phenomena, bio-inspired materials, liquid-liquid phase separation in biology, multistable elastic structures, colloidal and molecular self-assembly, and high performance computing.

Abstract

In this talk I will discuss our recent work on two problems. The first problem concerns with capillary rise between rough structures, a fundamental wetting phenomenon that is functionalised in biological organisms and prevalent in geological or man-made materials. Predicting the liquid rise height is more complex than currently considered in the literature because it is necessary to couple two wetting phenomena: capillary rise and hemiwicking. Experiments, simulations and analytic theory demonstrate how this coupling challenges our conventional understanding and intuitions of wetting and roughness. For example, the critical contact angle for hemiwicking becomes separation-dependent so that hemiwicking can vanish for even highly wetting liquids. The rise heights for perfectly wetting liquids can also be different in smooth and rough systems. The second problem concerns with droplets (or condensates) formed via a liquid-liquid phase separation process in biological cells. Despite the widespread importance of surface tension for the interactions between these droplets and other cellular components, there is currently no reliable technique for their measurement in live cells. To address this, we develop a high-throughput flicker spectroscopy technique. Applying it to a class of cellular droplets known as stress granules, we find their interface fluctuations cannot be described by surface tension alone. It is necessary to consider elastic bending deformation and a non-spherical base shape, suggesting that stress granules are viscoelastic droplets with a structured interface, rather than simple Newtonian liquids. Moreover, given the broad distributions of surface tension and bending rigidity observed, different types of stress granules can only be differentiated via large-scale surveys, which was not possible previously and our technique now enables.

 

Thu, 05 May 2022

16:00 - 17:00
L5

Gaussian distribution of squarefree and B-free numbers in short intervals

Alexander Mangerel
(Durham University)
Abstract
(Joint with O. Gorodetsky and B. Rodgers) It is a classical quest in analytic number theory to understand the fine-scale distribution of arithmetic sequences such as the primes. For a given length scale h, the number of elements of a "nice" sequence in a uniformly randomly selected interval $(x,x+h], 1 \leq x \leq X$, might be expected to follow the statistics of a normally distributed random variable (in suitable ranges of $1 \leq h \leq X$).  Following the work of Montgomery and Soundararajan, this is known to be true for the primes, but only if we assume several deep and long-standing conjectures among which the Riemann Hypothesis. In fact, previously such distributional results had not been proven for any (non-trivial) sequence of number-theoretic interest, unconditionally.

As a model for the primes, in this talk I will address such statistical questions for the sequence of squarefree numbers, i.e., numbers not divisible by the square of any prime, among other related ``sifted'' sequences called B-free numbers. I hope to further motivate and explain our main result that shows, unconditionally, that short interval counts of squarefree numbers do satisfy Gaussian statistics, answering several questions of R.R. Hall.

Fri, 04 Mar 2022

15:00 - 16:00
L6

Open questions on protein topology in its natural environment.

Christopher Prior
(Durham University)
Abstract

Small angle x-ray scattering is one of the most flexible and readily available experimental methods for obtaining information on the structure of proteins in solution. In the advent of powerful predictive methods such as the alphaFold and rossettaFold algorithms, this information has become increasingly in demand, owing to the need to characterise the more flexible and varying components of proteins which resist characterisation by these and more standard experimental techniques. To deal with structures about little of which is known a parsimonious method of representing the tertiary fold of a protein backbone as a discrete curve has been developed. It represents the fundamental local Ramachandran constraints through a pair of parameters and is able to generate millions of potentially realistic protein geometries in a short space of time. The data obtained from these methods provides a treasure trove of information on the potential range of topological structures available to proteins, which is much more constrained that that available to self-avoiding walks, but still far more complex than currently understood from existing data. I will introduce this method and its considerations then attempt to pose some questions I think topological data analysis might help answer. Along the way I will ask why roadies might also help give us some insight….

Subscribe to Durham University