Tue, 07 May 2019

14:00 - 14:30
L5

Sharp error bounds for Ritz vectors and approximate singular vectors

Yuji Nakatsukasa
(Oxford)
Abstract

We derive sharp bounds for the accuracy of approximate eigenvectors (Ritz vectors) obtained by the Rayleigh-Ritz process for symmetric eigenvalue problems. Using information that is available or easy to estimate, our bounds improve the classical Davis-Kahan sin-theta theorem by a factor that can be arbitrarily large, and can give nontrivial information even when the sin-theta theorem suggests that a Ritz vector might have no accuracy at all. We also present extensions in three directions, deriving error bounds for invariant subspaces, singular vectors and subspaces computed by a (Petrov-Galerkin) projection SVD method, and eigenvectors of self-adjoint operators on a Hilbert space.

Tue, 30 Apr 2019

14:30 - 15:00
L3

Exponential integrators for stiff PDEs

Lloyd Nick Trefethen
(Oxford)
Abstract

Many time-dependent PDEs -- KdV, Burgers, Gray-Scott, Allen-Cahn, Navier-Stokes and many others -- combine a higher-order linear term with a lower-order nonlinear term.  This talk will review the method of exponential integrators for solving such problems with better than 2nd-order accuracy in time.

Tue, 04 Jun 2019

14:30 - 15:00
L5

The dual approach to non-negative super-resolution: impact on primal reconstruction accuracy

Bogdan Toader
(Oxford)
Abstract

We study the problem of super-resolution using TV norm minimisation, where we recover the locations and weights of non-negative point sources from a few samples of their convolution with a Gaussian kernel. A practical approach is to solve the dual problem. In this talk, we study the stability of solutions with respect to the solutions to the dual problem. In particular, we establish a relationship between perturbations in the dual variable and the primal variables around the optimiser. This is achieved by applying a quantitative version of the implicit function theorem in a non-trivial way.

Tue, 04 Jun 2019

14:00 - 14:30
L5

Decentralised Sparse Multi-Task Regression

Dominic Richards
(Oxford)
Abstract

We consider a sparse multi-task regression framework for fitting a collection of related sparse models. Representing models as nodes in a graph with edges between related models, a framework that fuses lasso regressions with the total variation penalty is investigated. Under a form of generalised restricted eigenvalue assumption, bounds on prediction and squared error are given that depend upon the sparsity of each model and the differences between related models. This assumption relates to the smallest eigenvalue restricted to the intersection of two cone sets of the covariance matrix constructed from each of the agents' covariances. In the case of a grid topology high-probability bounds are given that match, up to log factors, the no-communication setting of fitting a lasso on each model, divided by the number of agents.  A decentralised dual method that exploits a convex-concave formulation of the penalised problem is proposed to fit the models and its effectiveness demonstrated on simulations. (Joint work with Sahand Negahban and Patrick Rebeschini)

Tue, 25 Jun 2019

15:30 - 16:30
L4

Global analytic geometry and Hodge theory

Kobi Kremnizer
(Oxford)
Abstract

In this talk I will describe how to make sense of the function $(1+t)^x$ over the integers. I will explain how different rings of analytic functions can be defined over the integers, and how this leads to global analytic geometry and global Hodge theory. If time permits I will also describe an analytic version of lambda-rings and how this can be used to define a cohomology theory for schemes over Z. This is joint work with Federico Bambozzi and Adam Topaz. 

Tue, 21 May 2019

15:30 - 16:30
L4

Equivariant Hilbert scheme of points on K3 surfaces and modular forms

Adam Gyenge
(Oxford)
Abstract

Let $X$ be a K3 surface and let $Z_X(q)$ be the generating series of the topological Euler characteristics of the Hilbert scheme of points on $X$. It is known that $q/Z_X(q)$ equals the discriminant form $\Delta(\tau)$ after the change of variables $q=e^{2 \pi i \tau}$. In this talk we consider the equivariant generalization of this result, when a finite group $G$ acts on $X$ symplectically. Mukai and Xiao has shown that there are exactly 81 possibilities for such an action in terms of types of the fixed points. The analogue of $q/Z_X(q)$ in each of the 81 cases turns out to be a cusp form (after the same change of variables). Knowledge of modular forms is not assumed in the talk; I will introduce all necessary concepts. Joint work with Jim Bryan.

Tue, 28 May 2019

12:00 - 13:15
L4

The Swampland, Holography and the Large Volume Scenario

Joseph Conlon
(Oxford)
Abstract

String compactifications are essential for connecting string theory to low energy particle physics and cosmology. Moduli stabilisation gives rise to effective Lagrangians that capture the low-energy degrees of freedom. Much recent interest has been on swampland consistency conditions on such effective
field theories - which low energy Lagrangians can arise from quantum gravity? Furthermore, given that moduli stabilisation scenarios often exist in AdS space, we can also ask: what do swampland conditions mean in the context of AdS/CFT? I describe work on developing a holographic understanding of moduli stabilisation and swampland consistency conditions. I focus in particular on the Large Volume Scenario, which is especially appealing from a holographic perspective as in the large volume limit all its interactions can be expressed solely in terms of the AdS radius, with no free dimensionless parameters.

 

Tue, 30 Apr 2019

14:00 - 15:15
L4

Single electron entanglement and the Aharonov-Bohm Effect

Vlatko Vedral
(Oxford)
Further Information

Please note the change of time (just this week)

Abstract

I will review the idea that entanglement must ultimately be understood in terms of modes, rather than in terms of particles. The most striking instance of mode entanglement is a single particle entangled state, which I will discuss both in the case of bosons as well as in the case of fermions. I then proceed to show that the Aharonov-Bohm effect can be understood by using a single electron entangled state. Finally, I will argue that this demonstrates beyond doubt that the Aharonov-Bohm effect is non non-local, contrary to what is frequently claimed in the literature.

 

Mon, 17 Jun 2019

14:15 - 15:15
L4

Bryant-Salamon metrics and coassociative fibrations

Jason Lotay
(Oxford)
Abstract

The first examples of complete holonomy G2 metrics were constructed by Bryant-Salamon and are thus of central importance in geometry, but also in physics, appearing for example in the work of Atiyah-Witten, Acharya-Witten and Acharya-Gukov.   I will describe joint work in progress with Spiro Karigiannis which realises Bryant-Salamon manifolds in dimension 7 as coassociative fibrations.  In particular, I will discuss the relationship of this study to gravitational instantons, conical singularities, and to recent work of Donaldson and Joyce-Karigiannis.

 

Tue, 05 Mar 2019
12:00
L4

Supersymmetric S-matrices via ambitwistors and the polarized scattering equations

Lionel Mason
(Oxford)
Abstract

Six-dimensional theories provide a unification of four-dimensional theories via dimensional reduction  together with access to some of the novel features arising from M-theory.  Ambitwistor strings directly generate S-matrices for massless theories in terms of formulae that localize on the solutions to the scattering equations; algebraic equations that determine n points on the Riemann sphere from n massless momenta.  These are sufficient to provide compact formulae for tree-level S-matrices for bosonic theories. This talk introduces their extension to the polarized scattering equations which arise from twistorial versions on ambitwistor-strings.  These lead to simple explicit formulae for superamplitudes in 6D for super Yang-Mills, supergravity, D5 and M5 branes and massive superamplitudes in 4D.  The framework extends also to 10 and 11 dimensions.  This is based on joint work with Yvonne Geyer, arxiv:1812.05548 and 1901.00134. 

Subscribe to Oxford