Mon, 30 Apr 2018

14:15 - 15:15
L4

C^infinity Schemes, and Manifolds with Corners

Kelli Francis-Staite
(Oxford)
Abstract

A C^infinity scheme is a version of a scheme that uses a maximal spectrum. The category of C^infinity schemes contains the category of Manifolds as a full subcategory, as well as being closed under fibre products. In other words, this category is equipped to handle intersection singularities of smooth spaces.

While originally defined in the set up of Synthetic Differential Geometry, C^infinity schemes have more recently been used to describe derived manifolds, for example, the d-manifolds of Joyce. There are applications of this in Symplectic Geometry, such as the describing the moduli space of J-holomorphic forms.

In this talk, I will describe the category of C^infinity schemes, and how this idea can be extended to manifolds with corners. If time, I will mention the applications of this in derived geometry.

Mon, 11 Jun 2018

14:15 - 15:15
L4

The C^0 inextendibility of the Schwarzschild spacetime

Jan Sbierski
(Oxford)
Abstract

A C^k-extension of a smooth and connected Lorentzian manifold (M,g) is an isometric embedding of M into a proper subset of a connected Lorentzian manifold (N,h) of the same dimension, where the Lorentzian metric h is C^k regular. If no such extension exists, then we say that (M,g) is C^k-inextendible. The study of low-regularity inextendibility criteria for Lorentzian manifolds is motivated by the strong cosmic censorship conjecture in general relativity.

The Schwarzschild spacetime is manifestly inextendible as a Lorentzian manifold with a C^2 regular metric. In this talk I will describe how one
proves the stronger statement that the maximal analytic Schwarzschild spacetime is inextendible as a Lorentzian manifold with a continuous metric.

Mon, 21 May 2018

16:00 - 17:00
L4

Recent advances in analysis of critical points of Landau-de Gennes energy in 2D and 3D

Georgy Kitavtsev
(Oxford)
Abstract

In the first part of this talk the two-dimensional Landau-de Gennes energy with several elastic constants, subject to general k-radial symmetric boundary conditions, will be analysed. It will be shown that for generic elastic constants the critical points consistent with the symmetry of the boundary conditions exist only in the case k=2. Analysis of the associated harmonic map type problem arising in the limit of small elastic constants allows to identify three types of radial profiles: with two, three or full five components. In the second part of the talk different paths for emergency of non-radially symmetric solutions and their analytical structure in 2D as well as 3D cases will be discussed. These results is a joint work with Jonathan Robbins, Valery Slastikov and Arghir Zarnescu.
 

Mon, 04 Jun 2018

16:00 - 17:00
L4

Rates of convergence to equilibrium in a one-dimensional kinetic equation

David Seifert
(Oxford)
Abstract

We consider a collisionless kinetic equation describing the probability density of particles moving in a one-dimensional domain subject to partly diffusive reflection at the boundary. It was shown in 2017 by Mokhtar-Kharroubi and Rudnicki that for large times such systems either converge to an invariant density or, if no invariant density exists, exhibit a so-called “sweeping phenomenon” in which the mass concentrates near small velocities. This dichotomy is obtained by means of subtle arguments relying on the theory of positive operator semigroups. In this talk I shall review some of these results before discussing how, under suitable assumptions both on the boundary operators (which in particular ensure that an invariant density exists) and on the initial density, one may even obtain estimates on the rate at which the system converges to its equilibrium. This is joint work with Mustapha Mokhtar-Kharroubi (Besançon).

Thu, 08 Mar 2018
16:00
L6

Permuting F_q using a density method

Giacomo Micheli
(Oxford)
Abstract

The construction of permutation functions of a finite field is a task of great interest in cryptography and coding theory. In this talk we describe a method which combines Chebotarev density theorem with elementary group theory to produce permutation rational functions over a finite field F_q. Our method is entirely constructive and as a corollary we get the classification of permutation polynomials up to degree 4 over any finite field of odd characteristic.

This is a joint work with Andrea Ferraguti.
 

Tue, 23 Jan 2018

12:00 - 13:15
L4

T-duality from ambitwistor strings

Eduardo Casali
(Oxford)
Abstract

We study the winding mode sector of recently discovered string theories, which were, until now, believed to describe only conventional field theories in target space. We discover that upon compactification winding modes allows the string to acquire an oscillator spectrum giving rise to an infinite tower of massive higher-spin modes. We study the spectra, S-matrices, T-duality and high-energy behaviour of the bosonic and supersymmetric models. In the tensionless limit, we obtain formulae for amplitudes based on the scattering equations. The windings decouple from the scattering equations but remain in the integrands. The existence of this winding sector shows that these new theories do have stringy aspects and describe non-conventional field theories.  This talk is based on https://arxiv.org/abs/1710.01241.

Tue, 23 Jan 2018

15:45 - 16:45
L4

Lie brackets on the homology of moduli spaces, and wall-crossing formulae

Dominic Joyce
(Oxford)
Abstract

Let $\mathbb K$ be a field, and $\mathcal M$ be the “projective linear" moduli stack of objects in a suitable $\mathbb K$-linear abelian category  $\mathcal A$ (such as the coherent sheaves coh($X$) on a smooth projective $\mathbb K$-scheme $X$) or triangulated category $\mathcal T$ (such as the derived category $D^b$coh($X$)). I will explain how to define a Lie bracket [ , ] on the homology $H_*({\mathcal M})$ (with a nonstandard grading), making $H_*({\mathcal M})$ into a graded Lie algebra. This is a new variation on the idea of Ringel-Hall algebra.
 There is also a differential-geometric version of this: if $X$ is a compact manifold with a geometric structure giving instanton-type equations (e.g. oriented Riemannian 4-manifold, $G_2$-manifold, Spin(7)-manifold) then we can define Lie brackets both on the homology of the moduli spaces of all $U(n)$ or $SU(n)$ connections on $X$ for all $n$, and on the homology of the moduli spaces of instanton $U(n)$ or $SU(n)$ connections on $X$ for all $n$.
 All this is (at least conjecturally) related to enumerative invariants, virtual cycles, and wall-crossing formulae under change of stability condition.
 Several important classes of invariants in algebraic and differential geometry — (higher rank) Donaldson invariants of 4-manifolds (in particular with $b^2_+=1$), Mochizuki invariants counting semistable coherent sheaves on surfaces, Donaldson-Thomas type invariants for Fano 3-folds and CY 4-folds — are defined by forming virtual classes for moduli spaces of “semistable” objects, and integrating some cohomology classes over them. The virtual classes live in the homology of the “projective linear" moduli stack. Yuuji Tanaka and I are working on a way to define virtual classes counting strictly semistables, as well as just stables / stable pairs. 
 I conjecture that in all these theories, the virtual classes transform under change of stability condition by a universal wall-crossing formula (from my previous work on motivic invariants) in the Lie algebra $(H_*({\mathcal M}), [ , ])$. 

Mon, 29 Jan 2018
12:45
L3

Compact G2 manifolds and the Duality between M-Theory and Heterotic String Theory

Andreas Braun
(Oxford)
Abstract

M-theory on K3 surfaces and Heterotic Strings on T^3 give rise to dual theories in 7 dimensions. Applying this duality fibre-wise is expected to connect G2 manifolds with Calabi-Yau threefolds (together with vector bundles). We make these ideas explicit for a class of G2 manifolds realized as twisted connected sums and prove the equivalence of the spectra of the dual theories. This naturally gives us examples of singular TCS G2 manifolds realizing non-abelian gauge theories with non-chiral matter.

Tue, 16 Jan 2018
14:30
L6

The exact minimum number of triangles in a graph of given order and size

Katherine Staden
(Oxford)
Abstract

A famous theorem of Mantel from 1907 states that every n-vertex graph with more than n^2/4 edges contains at least one triangle. In the 50s, Erdős asked for a quantitative version of this statement: for every n and e, how many triangles must an n-vertex e-edge graph contain?

This question has received a great deal of attention, and a long series of partial results culminated in an asymptotic solution by Razborov, extended to larger cliques by Nikiforov and Reiher. Currently, an exact solution is only known for a small range of edge densities, due to Lovász and Simonovits. In this talk, I will discuss the history of the problem and recent work which gives an exact solution for almost the entire range of edge densities. This is joint work with Hong Liu and Oleg Pikhurko.

Subscribe to Oxford