Mon, 12 Feb 2018
15:45
L6

The coarse geometry of group splittings

Alexander Margolis
(Oxford)
Abstract

One of the fundamental themes of geometric group theory is to
view finitely generated groups as geometric objects in their own right,
and to then understand to what extent the geometry of a group determines
its algebra. A theorem of Stallings says that a finitely generated group
has more than one end if and only if it splits over a finite subgroup.
In this talk, I will explain an analogous geometric characterisation of
when a group admits a splitting over certain classes of infinite subgroups.

Mon, 05 Feb 2018
15:45
L6

A transverse knot invariant from Z/2-equivariant Heegaard Floer cohomology

Sungkyung Kang
(Oxford)
Abstract

The Z/2-equivariant Heegaard Floer cohomlogy of the double cover of S^3 along a knot, defined by Lipshitz, Hendricks, and Sarkar, 
is an isomorphism class of F_2[\theta]-modules. In this talk, we show that this invariant is natural, and is functorial under based cobordisms. 
Given a transverse knot K in the standard contact 3-sphere, we define an element of the Z/2-equivariant Heegaard Floer cohomology 
that depends only on the tranverse isotopy class of K, and is functorial under certain symplectic cobordisms.

Mon, 05 Mar 2018

14:15 - 15:15
L4

Stratified hyperkähler spaces

Maxence Mayrand
(Oxford)
Abstract

Symplectic reduction is the natural quotient construction for symplectic manifolds. Given a free and proper action of a Lie group G on a symplectic manifold M, this process produces a new symplectic manifold of dimension dim(M) - 2 dim(G). For non-free actions, however, the result is usually fairly singular. But Sjamaar-Lerman (1991) showed that the singularities can be understood quite precisely: symplectic reductions by non-free actions are partitioned into smooth symplectic manifolds, and these manifolds fit nicely together in the sense that they form a stratification.

Symplectic reduction has an analogue in hyperkähler geometry, which has been a very important tool for constructing new examples of these special manifolds. In this talk, I will explain how Sjamaar-Lerman’s results can be extended to this setting, namely, hyperkähler quotients by non-free actions are stratified
spaces whose strata are hyperkähler.

 

Mon, 12 Feb 2018

14:15 - 15:15
L4

p-adic integration for the Hitchin fibration

Paul Ziegler
(Oxford)
Abstract

I will talk about recent work, joint with M. Gröchenig and D. Wyss, on two related results involving the cohomology of moduli spaces of Higgs bundles. The first is a positive answer to a conjecture of Hausel and Thaddeus which predicts the equality of suitably defined Hodge numbers of moduli spaces of Higgs bundles with SL(n)- and PGL(n)-structure. The second is a new proof of Ngô's geometric stabilization theorem which appears in the proof of the fundamental lemma. I will give an introduction to these theorems and outline our argument, which, inspired by work of Batyrev, proceeds by comparing the number of points of these moduli spaces over finite fields via p-adic integration.

 

Mon, 22 Jan 2018

14:15 - 15:15
L5

Geometry of subrings

Brent Doran
(Oxford)
Abstract

 The basic algebra-geometry dictionary for finitely generated k-algebras is one of the triumphs of 19th and early 20th century mathematics.  However, classes of related rings, such as their k-subalgebras, lack clean general properties or organizing principles, even when they arise naturally in problems of smooth projective geometry.  “Stabilization” in smooth topology and symplectic geometry, achieved by products with Euclidean space, substantially simplifies many
problems.  We discuss an analog in the more rigid setting of algebraic and arithmetic geometry, which, among other things (e.g., applications to counting rational points), gives some structure to the study of k-subalgebras.  We focus on the case of the moduli space of stable rational n-pointed curves to illustrate.

 

Fri, 10 Nov 2017
16:00
L1

North meets South Colloquium

Laura Capuano and Noemi Picco
(Oxford)
Abstract

Laura Capuano's talk 'Pell equations and continued fractions in number theory'

The classical Pell equation has an extraordinary long history and it is very useful in many different areas of number theory. For example, they given a way to write a prime congruent to 1 modulo 4 as a sum of two squares, or they can also be used to break RSA excryption when the decription key is too small. In this talk, I will present some properties of this wonderful equation and its relation with continued fractions. I will also treat the case of Pell equations in other contexts, such as the ring of polynomials, showing the differences with the classical case. 

Noemi Picco's talk 'Cortical neurogenesis: how humans (and mathematicians) can do more than macaque, with less'

The cerebral cortex is perhaps the crowning achievement of evolution and is the region of the brain that distinguishes us from other species. Studying the developmental programmes that generate cortices of different sizes and neuron counts, is the key to understanding both brain evolution and disease. I will show what mathematical modeling has to say about cortex evolution, when data resolution is poor. I will then discuss why humans are so special in the way they create their cortex, and how we are just like everybody else in many other aspects of brain development.

Mon, 06 Nov 2017
14:15
L5

An obstruction to planarity of contact structures

Marco Golla
(Oxford)
Abstract


We give new obstructions to the existence of planar open books on contact structures, in terms of the homology of their fillings. I will talk about applications to links of surface singularities, Seifert fibred spaces, and integer homology spheres. No prior knowledge of contact or symplectic topology will be assumed. This is joint work with Paolo Ghiggini and Olga Plamenevskaya.
 

Mon, 06 Nov 2017
12:45
L3

On the Vafa-Witten theory on closed four-manifolds

Yuuji Tanaka
(Oxford)
Abstract

We discuss mathematical studies on the Vafa-Witten theory, one of topological twists of N=4 super Yang-Mills theory in four dimensions, from the viewpoints of both differential and algebraic geometry. After mentioning backgrounds and motivation, we describe some issues to construct mathematical theory of this Vafa-Witten one, and explain possible ways to sort them out by analytic and algebro-geometric methods, the latter is joint work with Richard Thomas.

 
Mon, 22 Jan 2018
15:45
L6

Profinite rigidity and 3-manifolds

Martin Bridson
(Oxford)
Abstract

Developments in geometry and low dimensional topology have given renewed vigour to the following classical question: to what extent do the finite images of a finitely presented group determine the group? I'll survey what we know about this question in the context of 3-manifolds, and I shall present recent joint work with McReynolds, Reid and Spitler showing that the fundamental groups of certain hyperbolic orbifolds are distingusihed from all other finitely generated groups by their finite quotients.

Mon, 23 Oct 2017
15:45
L6

A Reduced Tensor Product of Braided Fusion Categories containing a Symmetric Fusion Category

Thomas Wassermann
(Oxford)
Abstract


In this talk I will construct a reduced tensor product of braided fusion categories containing a symmetric fusion category $\mathcal{A}$. This tensor product takes into account the relative braiding with respect to objects of $\mathcal{A}$ in these braided fusion categories. The resulting category is again a braided fusion category containing $\mathcal{A}$. This tensor product is inspired by the tensor product of $G$-equivariant once-extended three-dimensional quantum field theories, for a finite group $G$.
To define this reduced tensor product, we equip the Drinfeld centre $\mathcal{Z}(\mathcal{A})$ of the symmetric fusion category $\mathcal{A}$ with an unusual tensor product, making $\mathcal{Z}(\mathcal{A})$ into a 2-fold monoidal category. Using this 2-fold structure, we introduce a new type of category enriched over the Drinfeld centre to capture the braiding behaviour with respect to $\mathcal{A}$ in the braided fusion categories, and use this encoding to define the reduced tensor product.
 

Subscribe to Oxford