Wed, 15 Jun 2022
14:00
L5

The heterotic $G_2$ system and coclosed $G_2$-structures on cohomogeneity one manifolds

Izar Alonso Lorenzo
(Oxford)
Abstract

When considering compatifications of heterotic string theory down to 3D, the heterotic $G_2$ system arises naturally. It is a system for both geometric fields and gauge fields over a manifold with a $G_2$-structure. In particular, it asks for the $G_2$-structure to be coclosed. We will begin this talk defining this system and giving a description of the geometry of cohomogeneity one manifolds. Then, we will look for coclosed $G_2$-structures in the cohomogeneity one setting. We will end up by proving the existence of a family of coclosed $G_2$-structures which are invariant under a cohomogeneity one action of $\text{SU}(2)^2$ on certain seven-dimensional simply connected manifolds.

Wed, 01 Jun 2022
14:00
L5

Spectral Decomposition of Partition Functions

Carmen Jorge-Diaz
(Oxford)
Abstract

Modular forms of slow growth admit a decomposition in terms of the eigenfunctions of the Laplacian operator in the Upper Half Plane. Whilst this technology has been used for many years in the context of Number Theory, it has only recently been used to further understand the partition function and the spectrum of Conformal Field Theories in 2d. In this talk, we’ll review the technology and how it has been applied to CFTs by several authors, as well as present a few new results.

Tue, 07 Jun 2022

12:00 - 13:15
L5

Hydrodynamic Approach to Integrable Quantum Field Theory

Dr Aleksandra Ziolkowska
(Oxford)
Abstract

Hydrodynamics allow for efficient computation of many-body dynamics and have been successfully used in the study of black hole horizons, collective behaviour of QCD matter in heavy ion collisions, and non-equilibrium behaviour in strongly-interacting condensed matter systems.
In this talk, I will present the application of hydrodynamics to quantum field theory with an infinite number of local conservation laws. Such an integrable system can be described within the recently developed framework of generalised hydrodynamics. I will present the key assumptions of generalised hydrodynamics as well as summarise some recent developments in this field. In particular, I will concentrate on the study of the SU(3)_2-Homogeneous sine-Gordon model. Thanks to the hydrodynamic approach, we were able to identify the key dynamical signatures of unstable excitations in this integrable quantum field theory and simulate the real time RG-flow of the theory between interacting and free conformal regimes.
The talk is based on joint work with Olalla Castro-Alvaredo, Cecilia De Fazio and Benjamin Doyon.

Wed, 25 May 2022

14:00 - 15:00
L5

Topological Orders and Higher Fusion Categories

Thibault Décoppet
(Oxford)
Abstract

The notion of topological order was introduced by Xiao-Gang Wen in order to capture the features of the exotic phases of matter given by fractional quantum Hall phases. I will motivate why the corresponding mathematical structures are higher categories with additional properties. In 2+1-dimensions, I will explain in details how the definition of fusion category arises from physical and geometrical intuitions about topological orders. Finally, I will sketch how the notion of higher fusion category emerges in higher dimensions.

Tue, 10 May 2022

14:00 - 15:00
L4

A Ramsey problem in blowups of graphs

António Girão
(Oxford)
Abstract

For graphs $G$ and $H$, we say $G \stackrel{r}{\to} H$ if every $r$-colouring of the edges of $G$ contains a monochromatic copy of $H$. Let $H[t]$ denote the $t$-blowup of $H$. The blowup Ramsey number $B(G \stackrel{r}{\to} H;t)$ is the minimum $n$ such that $G[n] \stackrel{r}{\to} H[t]$. Fox, Luo and Wigderson refined an upper bound of Souza, showing that, given $G$, $H$ and $r$ such that $G \stackrel{r}{\to} H$, there exist constants $a=a(G,H,r)$ and $b=b(H,r)$ such that for all $t \in \mathbb{N}$, $B(G \stackrel{r}{\to} H;t) \leq ab^t$. They conjectured that there exist some graphs $H$ for which the constant $a$ depending on $G$ is necessary. We prove this conjecture by showing that the statement is true when $H$ is a $3$-chromatically connected, which includes all cliques on $3$ or more vertices. We are also able to show perhaps surprisingly that for any forest $F$ there is $f(F,t)$ such that  for any $G \stackrel{r}{\to} H$, $B(G \stackrel{r}{\to} H;t)\leq f(F,t)$ i.e. the function does not depend on the ground graph $G$. This is joint work with Robert Hancock.

Mon, 25 Apr 2022

12:45 - 13:45
L1

AdS Virasoro-Shapiro from dispersive sum rules

Joao Silva
(Oxford)
Abstract

We consider the four-point correlator of the stress-energy tensor in N=4 SYM, to leading order in inverse powers of the central charge, but including all order corrections in 1/lambda. This corresponds to the AdS version of the Virasoro-Shapiro amplitude to all orders in the small alpha'/low energy expansion. Using dispersion relations in Mellin space, we derive an infinite set of sum rules. These sum rules strongly constrain the form of the amplitude, and determine all coefficients in the low energy expansion in terms of the CFT data for heavy string operators, in principle available from integrability. For the first set of corrections to the flat space amplitude we find a unique solution consistent with the results from integrability and localisation.

Tue, 17 May 2022

14:00 - 15:00
L6

Splitting fields of real irreducible representations of finite groups

Dmitrii Pasechnik
(Oxford)
Abstract

We show that any irreducible representation $\rho$ of a finite group $G$ of exponent $n$, realisable over $\mathbb R$, is realisable over the field $E$ of real cyclotomic numbers of order $n$, and describe an algorithmic procedure transforming a realisation of $\rho$ over $\mathbb Q(\zeta_n)$ to one over $E$.

Mon, 30 May 2022

15:30 - 16:30
L5

Higher symmetries of gerbes

Severin Bunk
(Oxford)
Abstract

Gerbes are geometric objects describing the third integer cohomology group of a manifold and the B-field in string theory. Like line bundles, they admit connections and gauge symmetries. In contrast to line bundles, however, there are now isomorphisms between gauge symmetries: the gauge group of a gerbe is a smooth 2-group. Starting from a hands-on example, I will explain gerbes and some of their properties. The main topic of this talk will then be the study of symmetries of gerbes on a manifold with G-action, and how these symmetries assemble into smooth 2-group extensions of G. In the last part, I will survey how this construction can be used to provide a new smooth model for the String group, via a theory of ∞-categorical principal bundles and group extensions.

Mon, 23 May 2022

15:30 - 16:30
L5

Product set growth in mapping class groups

Alice Kerr
(Oxford)
Abstract

A standard question in group theory is to ask if we can categorise the subgroups of a group in terms of their growth. In this talk we will be asking this question for uniform product set growth, a property that is stronger than the more widely understood notion of uniform exponential growth. We will see how considering acylindrical actions on hyperbolic spaces can help us, and give a particular application to mapping class groups.

 

Subscribe to Oxford