Tue, 10 May 2022

14:00 - 15:00
L4

A Ramsey problem in blowups of graphs

António Girão
(Oxford)
Abstract

For graphs $G$ and $H$, we say $G \stackrel{r}{\to} H$ if every $r$-colouring of the edges of $G$ contains a monochromatic copy of $H$. Let $H[t]$ denote the $t$-blowup of $H$. The blowup Ramsey number $B(G \stackrel{r}{\to} H;t)$ is the minimum $n$ such that $G[n] \stackrel{r}{\to} H[t]$. Fox, Luo and Wigderson refined an upper bound of Souza, showing that, given $G$, $H$ and $r$ such that $G \stackrel{r}{\to} H$, there exist constants $a=a(G,H,r)$ and $b=b(H,r)$ such that for all $t \in \mathbb{N}$, $B(G \stackrel{r}{\to} H;t) \leq ab^t$. They conjectured that there exist some graphs $H$ for which the constant $a$ depending on $G$ is necessary. We prove this conjecture by showing that the statement is true when $H$ is a $3$-chromatically connected, which includes all cliques on $3$ or more vertices. We are also able to show perhaps surprisingly that for any forest $F$ there is $f(F,t)$ such that  for any $G \stackrel{r}{\to} H$, $B(G \stackrel{r}{\to} H;t)\leq f(F,t)$ i.e. the function does not depend on the ground graph $G$. This is joint work with Robert Hancock.

Mon, 25 Apr 2022

12:45 - 13:45
L1

AdS Virasoro-Shapiro from dispersive sum rules

Joao Silva
(Oxford)
Abstract

We consider the four-point correlator of the stress-energy tensor in N=4 SYM, to leading order in inverse powers of the central charge, but including all order corrections in 1/lambda. This corresponds to the AdS version of the Virasoro-Shapiro amplitude to all orders in the small alpha'/low energy expansion. Using dispersion relations in Mellin space, we derive an infinite set of sum rules. These sum rules strongly constrain the form of the amplitude, and determine all coefficients in the low energy expansion in terms of the CFT data for heavy string operators, in principle available from integrability. For the first set of corrections to the flat space amplitude we find a unique solution consistent with the results from integrability and localisation.

Tue, 17 May 2022

14:00 - 15:00
L6

Splitting fields of real irreducible representations of finite groups

Dmitrii Pasechnik
(Oxford)
Abstract

We show that any irreducible representation $\rho$ of a finite group $G$ of exponent $n$, realisable over $\mathbb R$, is realisable over the field $E$ of real cyclotomic numbers of order $n$, and describe an algorithmic procedure transforming a realisation of $\rho$ over $\mathbb Q(\zeta_n)$ to one over $E$.

Mon, 30 May 2022

15:30 - 16:30
L5

Higher symmetries of gerbes

Severin Bunk
(Oxford)
Abstract

Gerbes are geometric objects describing the third integer cohomology group of a manifold and the B-field in string theory. Like line bundles, they admit connections and gauge symmetries. In contrast to line bundles, however, there are now isomorphisms between gauge symmetries: the gauge group of a gerbe is a smooth 2-group. Starting from a hands-on example, I will explain gerbes and some of their properties. The main topic of this talk will then be the study of symmetries of gerbes on a manifold with G-action, and how these symmetries assemble into smooth 2-group extensions of G. In the last part, I will survey how this construction can be used to provide a new smooth model for the String group, via a theory of ∞-categorical principal bundles and group extensions.

Mon, 23 May 2022

15:30 - 16:30
L5

Product set growth in mapping class groups

Alice Kerr
(Oxford)
Abstract

A standard question in group theory is to ask if we can categorise the subgroups of a group in terms of their growth. In this talk we will be asking this question for uniform product set growth, a property that is stronger than the more widely understood notion of uniform exponential growth. We will see how considering acylindrical actions on hyperbolic spaces can help us, and give a particular application to mapping class groups.

 

Mon, 16 May 2022

15:30 - 16:30
L5

Duality groups and Cohen-Macaulay spaces

Ric Wade
(Oxford)
Abstract

Via Poincaré duality, fundamental groups of aspherical manifolds have (appropriately shifted) isomorphisms between their homology and cohomology. In a 1973 Inventiones paper, Bieri and Eckmann defined a broader notion of a Duality Group, where the isomorphism between homology and cohomology can be twisted by what they called a Dualizing Module. Examples of these groups in geometric group theory (after passing to a finite-index subgroup) include $GL(n,\mathbb{Z})$, mapping class groups, and automorphism groups of free groups.

In work-in-progress with Thomas Wasserman we are looking into the following puzzle: the examples of duality groups that we know of that do not come from manifolds all have classifying spaces that satisfy a weaker local condition called the Cohen-Macaulay property. These spaces also satisfy weaker (twisted) versions of Poincaé duality via their local homology sheaves (or local cohomology cosheaves), and we are attempting to understand more about the links between these geometric versions of duality and the algebraic notion of a duality group. The goal of the talk is to explain more about the words used in the above paragraphs and say where we have got to so far.



 

Sun, 20 Mar 2022

17:30 - 18:30
L1

Bach, the Universe & Everything - The Mathematics of Decisions

Orchestra of the Age of Enlightenment & Sam Cohen
(Oxford)
Further Information

Oxford Mathematics in partnership with Orchestra of the Age of Enlightenment - Bach, the Universe & Everything

The Mathematics of Decisions
Sunday 20 March, 5:30-6.30pm
Mathematical Institute, OX2 6GG

The Science:
In this talk, Oxford Mathematics's Samuel Cohen asks: how do you make decisions today when you know things will change tomorrow?

The Music:
JS Bach: Liebster Jesu, mein Verlangen (Dearest Jesus, my Desire, BWV 32)
This Cantata is in the form of a dialogue. It reminds us of what we have lost and what we can find.  

JS Bach: Prelude, Freu dich sehr, o meine Seele (BWV Anh. II 52)
William Byrd: Christe qui lux es et dies
Tomaso Albinoni: Adagio from Oboe Concerto Op 9 No. 2

Tickets £15: Buy tickets here

Tue, 01 Mar 2022
14:00
L4

Independent sets in random subgraphs of the hypercube

Gal Kronenberg
(Oxford)
Abstract

Independent sets in bipartite regular graphs have been studied extensively in combinatorics, probability, computer science and more. The problem of counting independent sets is particularly interesting in the d-dimensional hypercube $\{0,1\}^d$, motivated by the lattice gas hardcore model from statistical physics. Independent sets also turn out to be very interesting in the context of random graphs.

The number of independent sets in the hypercube $\{0,1\}^d$ was estimated precisely by Korshunov and Sapozhenko in the 1980s and recently refined by Jenssen and Perkins.

In this talk we will discuss new results on the number of independent sets in a random subgraph of the hypercube. The results extend to the hardcore model and rely on an analysis of the antiferromagnetic Ising model on the hypercube.

This talk is based on joint work with Yinon Spinka.

Tue, 22 Feb 2022
14:00
C2

Minimum degree stability and locally colourable graphs

Freddie Illingworth
(Oxford)
Abstract

We tie together two natural but, a priori, different themes. As a starting point consider Erdős and Simonovits's classical edge stability for an $(r + 1)$-chromatic graph $H$. This says that any $n$-vertex $H$-free graph with $(1 − 1/r + o(1)){n \choose 2}$ edges is close to (within $o(n^2)$ edges of) $r$-partite. This is false if $1 − 1/r$ is replaced by any smaller constant. However, instead of insisting on many edges, what if we ask that the $n$-vertex graph has large minimum degree? This is the basic question of minimum degree stability: what constant $c$ guarantees that any $n$-vertex $H$-free graph with minimum degree greater than $cn$ is close to $r$-partite? $c$ depends not just on chromatic number of $H$ but also on its finer structure.

Somewhat surprisingly, answering the minimum degree stability question requires understanding locally colourable graphs -- graphs in which every neighbourhood has small chromatic number -- with large minimum degree. This is a natural local-to-global colouring question: if every neighbourhood is big and has small chromatic number must the whole graph have small chromatic number? The triangle-free case has a rich history. The more general case has some similarities but also striking differences.

Subscribe to Oxford