Tue, 14 Nov 2023
13:00
L1

Carrollian perspective on celestial holography

Romain Ruzziconi
(Oxford)
Abstract

I will review some aspects of gravity in asymptotically flat spacetime and mention important challenges to obtain a holographic description in this framework. I will then present two important approaches towards flat space holography, namely Carrollian and celestial holography, and explain how they are related to each other. Similarities and differences between flat and anti-de Sitter spacetimes will be emphasized throughout the talk. 
 

Tue, 07 Nov 2023
13:00
L1

3D gravity, Virasoro TQFT, and ensembles of approximate CFT’s

Gabriel Wong
(Oxford)
Abstract

Recent progress in AdS/CFT has provided a good understanding of how the bulk spacetime is encoded in the entanglement structure of the boundary CFT. However, little is known about how spacetime emerges directly from the bulk quantum theory. We address this question in AdS3 pure gravity, which we formulate as a topological quantum field theory. We explain how gravitational entropy can be viewed as bulk entanglement entropy of gravitational edge modes.  These edge modes transform under a quantum group symmetry. This suggests an effective description of bulk microstates in terms of collective, anyonic degrees of freedom whose entanglement leads to the emergence of the bulk spacetime.  Time permitting we will discuss a proposal for how our bulk TQFT arises from an ensemble of approximate CFT’s, generalizing the relation between JT gravity and random matrix ensemble.

Tue, 24 Oct 2023
13:00
L1

Duality defects, anomalies and RG flows

Christian Copetti
(Oxford)
Abstract

We review the construction of non-invertible duality defects in various dimensions. We explain how they can be preserved along RG flows and how their realization on gapped phases contains their 't Hooft anomalies. We finally give a presentation of the anomalies from the Symmetry TFT. Time permitting I will discuss some possible future applications.

Mon, 24 Apr 2023
13:00
L1

G2-Manifolds from 4d N = 1 Theories, Part I: Domain Walls

Evyatar Sabag
(Oxford)
Abstract

We propose new G2-holonomy manifolds, which geometrize the Gaiotto-Kim 4d N = 1 duality
domain walls of 5d N = 1 theories. These domain walls interpolate between different extended
Coulomb branch phases of a given 5d superconformal field theory. Our starting point is the
geometric realization of such a 5d superconformal field theory and its extended Coulomb
branch in terms of M-theory on a non-compact singular Calabi-Yau three-fold and its Kahler
cone. We construct the 7-manifold that realizes the domain wall in M-theory by fibering the
Calabi-Yau three-fold over a real line, whilst varying its Kahler parameters as prescribed by
the domain wall construction. In particular this requires the Calabi-Yau fiber to pass through
a canonical singularity at the locus of the domain wall. Due to the 4d N = 1 supersymmetry
that is preserved on the domain wall, we expect the resulting 7-manifold to have holonomy G2.
Indeed, for simple domain wall theories, this construction results in 7-manifolds, which are
known to admit torsion-free G2-holonomy metrics. We develop several generalizations to new
7-manifolds, which realize domain walls in 5d SQCD theories.

Mon, 22 May 2023
13:00
L1

Generalized Charges of Symmetries

Lakshya Bhardwaj
(Oxford)
Abstract

I will discuss various possible ways a global symmetry can act on operators in a quantum field theory. The possible actions on q-dimensional operators are referred to as q-charges of the symmetry. Crucially, there exist generalized higher-charges already for an ordinary global symmetry described by a group G. The usual charges are 0-charges, describing the action of the symmetry group G on point-like local operators, which are well-known to correspond to representations of G. We find that there is a neat generalization of this fact to higher-charges: i.e. q-charges are (q+1)-representations of G. I will also discuss q-charges for generalized global symmetries, including not only invertible higher-form and higher-group symmetries, but also non-invertible categorical symmetries. This talk is based on a recent (arXiv: 2304.02660) and upcoming works with Sakura Schafer-Nameki.

Thu, 24 Nov 2022
15:00
L3

Desingularisation of conically singular Cayley submanifolds

Gilles Englebert
(Oxford)
Abstract

Cayley submanifolds in Spin(7) geometry are an analogue and generalisation of complex submanifolds in Kähler geometry. In this talk we provide a glimpse into calibrated geometry, which encompasses both of these, and how it ties into the study of manifolds of special holonomy. We then focus on the deformation theory of compact and conically singular Cayleys. Finally we explain how to remove conical singularities via a gluing construction.

Thu, 10 Nov 2022
15:00
L3

Compactified Universal Jacobians over Stacks of Stable Curves via GIT

George Cooper
(Oxford)
Abstract

Associated to any smooth projective curve C is its degree d Jacobian variety, parametrising isomorphism classes of degree d line bundles on C. Letting the curve vary as well, one is led to the universal Jacobian stack. This stack admits several compactifications over the stack of marked stable curves, depending on the choice of a stability condition. In this talk I will introduce these compactified universal Jacobians, and explain how their moduli spaces can be constructed using Geometric Invariant Theory (GIT). This talk is based on arXiv:2210.11457.

Mon, 24 Oct 2022
13:00
L1

Decomposition and condensation defects in 3d

Ling Lin
(Oxford)
Abstract

Quantum field theories (QFTs) in d dimensions that posses a (d-1)-form symmetry are conjectured to decompose into disjoint “universes”, each of which is itself a (local and unitary) QFT. I will give an overview of our current understanding of decomposition, and then discuss how this phenomenon occurs in the fusion of condensation defects of certain 3d QFTs. This gives a “microscopic” explanation of why in these instances, the fusion coefficient can be taken as an integer rather than a general TQFT.

Mon, 31 Oct 2022
13:00
L1

Holomorphic twist and Confinement

Jingxiang Wu
(Oxford)
Abstract

I will describe a procedure, known as holomorphic twist, to isolate protected quantities in supersymmetric quantum field theories. The resulting theories are holomorphic, interacting and have infinite dimensional symmetries, analogous to the holomorphic half of a 2D CFT. I will explain how to study quantum corrections to these symmetries and other  higher operations.
As a surprise, we find a novel UV manifestation of
confinement, dubbed "holomorphic confinement," in the example of pure
SU(N) super Yang-Mills.

Mon, 17 Oct 2022
13:00
L1

Semiclassics for Large Quantum Numbers

Mark Mezei
(Oxford)
Abstract

According to the correspondence principle, classical physics emerges in the limit of large quantum numbers. We examine three examples of the semiclassical description of conformal field theory data: large charge boundary operators in the O(2) model, large spin impurities in the free triplet scalar field theory and large charge Wilson lines in QED. By simultaneously taking the coupling to zero and quantum numbers to infinity, we can connect the microscopic to the emergent classical description smoothly.

Subscribe to Oxford