### Classical and elliptic polylogarithms

## Abstract

The Dirichlet class number formula gives an expression for the residue at s=1 of the Dedekind zeta function of a number field K in terms of certain quantities associated to K. Among those is the regulator of K, a certain determinant involving logarithms of units in K. In the 1980s, Don Zagier gave a conjectural expression for the values at integers s $\geq$ 2 in terms of "higher regulators", with polylogarithms in place of logarithms. The goal of this talk is to give an algebraic-geometric interpretation of these polylogarithms. Time permitting, we will also discuss a similar picture for Hasse--Weil L-functions of elliptic curves.