Thu, 28 Nov 2019

16:00 - 17:00
L4

The Systemic Implications of the Bail-In Design

Alissa Kleinnijenhuis
(Oxford University)
Abstract

The 2007-2008 financial crisis forced governments to choose between the unattractive alternatives of either bailing out a systemically important bank (SIBs) or having it fail in a disruptive manner. Bail-in has been put forward as the primary tool to resolve a failing bank, which would end the too-big-to-fail problem by letting stakeholders shoulder the losses, while minimising the calamitous systemic impact of a bank failure. Though the aptness of bail-in has been evinced in relatively minor idiosyncratic bank failures, its efficacy in maintaining stability in cases of large bank failures and episodes of system-wide crises remains to be practically tested. This paper investigates the financial stability implications of the bail-in design, in all these cases. We develop a multi-layered network model of the European financial system that captures the prevailing endogenous-amplification mechanisms: exposure loss contagion, overlapping portfolio contagion, funding contagion, bail-inable debt revaluations, and bail-inable debt runs. Our results reveal that financial stability hinges on a set of `primary' and `secondary' bail-in parameters, including the failure threshold, recapitalisation target, debt-to-equity conversion rate, loss absorption requirements, debt exclusions and bail-in-design certainty – and we uncover how. We also demonstrate that the systemic footprint of the bail-in design is not properly understood without the inclusion of multiple contagion mechanisms and non-banks. Our evidence fortunately suggests that the pivot for stability is in the hands of policymakers. It also suggests, however, that the current bail-in design might be in the regime of instability.

Mon, 21 Oct 2019

16:00 - 17:00
C1

Relative decidability via the tilting correspondence

Konstantinos Kartas
(Oxford University)
Abstract

The goal of the talk is to present a proof of the following statement:
Let (K,v) be an algebraic extension of (Q_p,v_p) whose completion is perfectoid. We show that K is relatively decidable to its tilt K^♭, i.e. if K^♭ is decidable in the language of valued fields, then so is K. 
In the first part [of the talk], I will try to cover the necessary background needed from model theory and the theory of perfectoid fields.

Tue, 03 Dec 2019
14:15
L4

Deformation of a Howe duality

Marcelo De Martino
(Oxford University)
Abstract

In this talk, I will report about a joint work with D. Ciubotaru, in which we investigate the Dunkl version of the classical Howe-duality (O(k),spo(2|2)). Similar Fischer-type decompositions were studied before in the works of Ben-Said, Brackx, De Bie, De Schepper, Eelbode, Orsted, Soucek and Somberg for other Howe-dual pairs. Our work builds on the notion of a Dirac operator for Drinfeld algebras introduced by Ciubotaru, which was inspired by the analogous theory for Lie algebras, as well as the work of Cheng and Wang on classical Howe dualities.

Tue, 26 Nov 2019
14:15
L4

Heisenberg groups and graded Lie algebras

Beth Romano
(Oxford University)
Abstract

I will talk about a way of building graded Lie algebras from certain Heisenberg groups. The input for this construction arises naturally when studying families of algebraic curves, and we'll look at some examples in which Lie theory interacts with number theory in an illuminating way. 

Tue, 05 Nov 2019

12:00 - 13:15
L4

Quantum Chaos in Perspective

Jon Keating
(Oxford University)
Abstract

 I will review some of the major research themes in Quantum Chaos over the past 50 years, and some of the questions currently attracting attention in the mathematics and physics literatures.

Tue, 05 Nov 2019

14:15 - 15:15
L4

Axiomatizability and profinite groups

Dan Segal
(Oxford University)
Abstract

A mathematical structure is `axiomatizable' if it is completely determined by some family of sentences in a suitable first-order language. This idea has been explored for various kinds of structure, but I will concentrate on groups. There are some general results (not many) about which groups are or are not axiomatizable; recently there has been some interest in the sharper concept of 'finitely axiomatizable' or FA - that is, when only a finite set of sentences (equivalently, a single sentence) is allowed.

While an infinite group cannot be FA, every finite group is so, obviously. A profinite group is kind of in between: it is infinite (indeed, uncountable), but compact as a topological group; and these groups share many properties of finite groups, though sometimes for rather subtle reasons. I will discuss some recent work with Andre Nies and Katrin Tent where we prove that certain kinds of profinite group are FA among profinite groups. The methods involve a little model theory, and quite a lot of group theory.

 

Tue, 22 Oct 2019
14:15
L4

Representations associated to gradations of colour Lie algebras

Philippe Meyer
(Oxford University)
Abstract

The notion of colour Lie algebra, introduced by Ree (1960), generalises notions of Lie algebra and Lie superalgebra. From an orthogonal representation V of a quadratic colour Lie algebra g, we give various ways of constructing a colour Lie algebra g’ whose bracket extends the bracket of g and the action of g on V. A first possibility is to consider g’=g⊕V and requires the cancellation of an invariant studied by Kostant (1999). Another construction is possible when the representation is ``special’’ and in this case the extension is of the form g’=g⊕sl(2,k)⊕V⊗k^2. Covariants are associated to special representations and satisfy to particular identities generalising properties studied by Mathews (1911) on binary cubics. The 7-dimensional fundamental representation of a Lie algebra of type G_2 and the 8-dimensional spinor representation of a Lie algebra of type so(7) are examples of special representations.

Thu, 23 May 2019

16:00 - 17:00
L6

The Sum-Product Phenomenon

George Shakan
(Oxford University)
Abstract

In 1983, Erdos and Szemerédi conjectured that for any finite subset of the integers, either the sumset or the product set has nearly quadratic growth. Applications include incidence geometry, exponential sums, compressed image sensing, computer science, and elsewhere. We discuss recent progress towards the main conjecture and related questions. 

Wed, 29 May 2019
16:00
C1

Leighton's Theorem

Sam Shepherd
(Oxford University)
Abstract

Leighton's Theorem states that if two finite graphs have a common universal cover then they have a common finite cover. I will present a new proof of this using groupoids, and then talk about two generalisations of the theorem that can also be tackled with this groupoid approach: one gives us control over the local structure of the common finite cover, and the other deals with graphs of spaces.

Wed, 12 Jun 2019
16:00
C1

Groups with negative curvature

David Hume
(Oxford University)
Abstract

I will present a survey of commonly considered notions of negative curvature for groups, focused on generalising properties of Gromov hyperbolic groups.

Subscribe to Oxford University