Thu, 13 Jun 2019
16:00
C4

The signature obstruction to finding characteristic classes for manifold bundles

Jan Steinebrunner
(Oxford University)
Abstract

A cohomology class on the diffeomorphism group Diff(M) of a manifold M

can be thought of as a characteristic class for smooth M-bundles.
I will survey a technique for producing examples of such classes,
and then explain how the signature (of 4-manifolds) provides an
obstruction to this technique in dimension 3.

I will define Miller-Morita-Mumford classes and explain how we can
think of them as coming from classes on the cobordism category.
Madsen and Weiss showed that for a surface S of genus g all cohomology
classes
of the mapping class group MCG(S) (of degree < 2(g-2)/3) are MMM-classes.
This technique has been successfully ported to higher even dimensions d= 2n,
but it cannot possibly work in odd dimensions:
a theorem of Ebert says that for d=3 all MMM-classes are trivial.
In the second part of my talk I will sketch a new proof of (a part of)
Ebert's theorem.
I first recall the definition of the signature sign(W) of a 4 manifold W,
and some of its properties, such as additivity with respect to gluing.
Using the signature and an idea from the world of 1-2-3-TQFTs,
I then go on to define a 'central extension' of the three dimensional
cobordism category.
This central extension corresponds to a 2-cocycle on the 3d cobordism
category,
and we will see that the construction implies that the associated MMM-class
has to vanish on all 3-dimensional manifold bundles.

Wed, 19 Jun 2019
16:00
C1

The spectrum of simplicial volume

Nicolaus Heuer
(Oxford University)
Abstract

Simplicial volume was first introduced by Gromov to study the minimal volume of manifolds. Since then it has emerged as an active research field with a wide range of applications. 

I will give an introduction to simplicial volume and describe a recent result with Clara Löh (University of Regensburg), showing that the set of simplicial volumes in higher dimensions is dense in $R^+$.

Wed, 01 May 2019
16:00
C1

A Beginner's Guide to the Poincare Conjecture

Joseph Scull
(Oxford University)
Abstract


The Poincare Conjecture was first formulated over a century ago and states that there is only one closed simply connected 3-manifold, hinting at a link between 3-manifolds and their fundamental groups. This seemingly basic fact went unproven until the early 2000s when Perelman proved Thurston's much more powerful Geometrisation Conjecture, providing us with a powerful structure theorem for understanding all closed 3-manifolds.
In this talk I will introduce the results developed throughout the 20th century that lead to Thurston and Perelman's work. Then, using Geometrisation as a black box, I will present a proof of the Poincare Conjecture. Throughout we shall follow the crucial role that the fundamental group plays and hopefully demonstrate the geometric and group theoretical nature of much of the modern study of 3-manifolds.
As the title suggests, no prior understanding of 3-manifolds will be expected.
 

Tue, 28 May 2019

14:15 - 15:30
L4

Linear characters of Sylow subgroups of the symmetric group

Stacey Law
(Oxford University)
Abstract

Let $p$ be an odd prime and $n$ a natural number. We determine the irreducible constituents of the permutation module induced by the action of the symmetric group $S_n$ on the cosets of a Sylow $p$-subgroup $P_n$. In the course of this work, we also prove a symmetric group analogue of a well-known result of Navarro for $p$-solvable groups on a conjugacy action of $N_G(P)$. Before describing some consequences of these results, we will give an overview of the background and recent related results in the area.

Thu, 20 Jun 2019
16:00
C4

What is Arakelov Geometry?

Esteban Gomezllata Marmolejo
(Oxford University)
Abstract

Arakelov geometry studies schemes X over ℤ, together with the Hermitian complex geometry of X(ℂ).
Most notably, it has been used to give a proof of Mordell's conjecture (Faltings's Theorem) by Paul Vojta; curves of genus greater than 1 have at most finitely many rational points.
In this talk, we'll introduce some of the ideas behind Arakelov theory, and show how many results in Araklev theory are analogous—with additional structure—to classic results such as intersection theory and Riemann Roch.

Thu, 23 May 2019
16:00
C4

Quantum Invariants - The Jones Polynomial as a bridge between algebra and topology

Cristina Palmer-Anghel
(Oxford University)
Abstract

The world of quantum invariants began in 1983 with the discovery of the Jones polynomial. Later on, Reshetikhin and Turaev developed an algebraic machinery that provides knot invariants. This algebraic construction leads to a sequence of quantum generalisations of this invariant, called coloured Jones polynomials. The original Jones polynomial can be defined by so called skein relations. However, unlike other classical invariants for knots like the Alexander polynomial, its relation to the topology of the complement is still a mysterious and deep question. On the topological side, R. Lawrence defined a sequence of braid group representations on the homology of coverings of configuration spaces. Then, based on her work, Bigelow gave a topological model for the Jones polynomial, as a graded intersection pairing between certain homology classes. We aim to create a bridge between these theories, which interplays between representation theory and low dimensional topology. We describe the Bigelow-Lawrence model, emphasising the construction of the homology classes. Then, we show that the sequence of coloured Jones polynomials can be seen through the same formalism, as topological intersection pairings of homology classes in coverings of the configuration space in the punctured disc.

Thu, 09 May 2019
16:00
C4

Orientability of moduli spaces of coherent sheaves on Calabi–Yau 4-folds

Jacob Gross
(Oxford University)
Abstract

Gauge-theoretic invariants such as Donaldson or Seiberg–Witten invariants of 4-manifolds, Casson invariants of 3-manifolds, Donaldson–Thomas invariants of Calabi–Yau 3- and 4-folds, and putative Donaldson–Segal invariants of G_2 manifolds are defined by constructing a moduli space of solutions to an elliptic PDE as a (derived) manifold and integrating the (virtual) fundamental class against cohomology classes. For a moduli space to have a (virtual) fundamental class it must be compact, oriented, and (quasi-)smooth. We first describe a general framework for addressing orientability of gauge-theoretic moduli spaces due to Joyce–Tanaka–Upmeier. We then show that the moduli stack of perfect complexes of coherent sheaves on a Calabi–Yau 4-fold X is a homotopy-theoretic group completion of the topological realisation of the moduli stack of algebraic vector bundles on X. This allows one to extend orientations on the locus of algebraic vector bundles to the boundary of the (compact) moduli space of coherent sheaves using the universal property of homotopy-theoretic group completions. This is a necessary step in constructing Donaldson–Thomas invariants of Calabi–Yau 4-folds. This is joint work with Yalong Cao and Dominic Joyce.

Tue, 05 Mar 2019

12:45 - 13:30
C3

Modelling Magnetically Targeted Stem Cell Delivery

Edwina Yeo
(Oxford University)
Abstract

The development of an effective method of targeting delivery of stem cells to the site of an injury is a key challenge in regenerative medicine. However, production of stem cells is costly and current delivery methods rely on large doses in order to be effective. Improved targeting through use of an external magnetic field to direct delivery of magnetically-tagged stem cells to the injury site would allow for smaller doses to be used.
We present a model for delivery of stem cells implanted with a fixed number of magnetic nanoparticles under the action of an external magnetic field. We examine the effect of magnet geometry and strength on therapy efficacy. The accuracy of the mathematical model is then verified against experimental data provided by our collaborators at the University of Birmingham.

Wed, 06 Mar 2019
16:00
C1

A quick intro to right angled buildings

Ido Grayevsky
(Oxford University)
Abstract


Buildings are geometric objects, originally introduced by Tits to study Lie groups that act on their corresponding building. Apart from their significance for Lie groups, buidings and their automorphism groups are a rich source of examples for groups with interesting properties (for example, it is a result of Caprace that some buildings admit an automorphism group which is compactly generated, abstractly simple and locally compact). Right Angled Buildings (RABs) are a specific kind of building whose geometry can be well understood as it resembles the geometry of a tree. This allows one to generalise ideas like the Burger-Mozes universal groups to the setting of RABs.
I plan to give an introduction to RABs. As a complete formal introduction to buildings would take more than an hour, I will instead present various illustrative examples to give you an idea of what you should have in mind when you think of a (right-angled) building. I will be as formal as I can in presenting the basic features of buildings - Coxeter complexes, chambers, apartments, retractions and residues.  In the remaining time I will say as much as I can about the geometry of RABs, and explain how to use this geometry to derive a structure theorem for the automorphism group of a RAB, towards a definition of Burger-Mozes universal groups for RABs.
 

Subscribe to Oxford University